About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (m)
Search
Modules-2
Grp_Modules-2 (Example H63E31)
modules-algebra
MODULES OVER AN ALGEBRA AND GROUP REPRESENTATIONS
modules-Galois-representations
varphi-modules and Galois Representations in Magma (MOD P GALOIS REPRESENTATIONS)
modules-matrix-algebra
Modules over a General Algebra (MODULES OVER AN ALGEBRA AND GROUP REPRESENTATIONS)
modules-multivariate
MODULES OVER MULTIVARIATE RINGS
ModulesOverCommonField
ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
ModulesOverSmallerField
ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
ModuleWithBasis
ModuleWithBasis(Q): SeqEnum -> ModAlg
Moduli
Moduli(L) : AlgLie -> SeqEnum
Moduli(M) : ModTupRng -> [ RngElt ]
ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
Moduli points
CrvMod_Moduli points (Example H137E1)
ModuliOfLieAlgebra
AlgLie_ModuliOfLieAlgebra (Example H107E29)
ModuliPoints
ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
Modulus
BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
BBSModulus(b) : RngIntElt -> RngIntElt
Conductor(GR) : GrossenChar -> RngOrdIdl, SeqEnum
CongruenceModulus(A) : ModAbVar -> RngIntElt
CongruenceModulus(M : parameters) : ModSym -> RngIntElt
FactoredModulus(R) : RngIntRes -> RngIntEltFact
Modulus(c) : FldComElt -> FldReElt
Modulus(G) : GrpDrch -> RngIntElt
Modulus(chi) : GrpDrchElt -> RngIntElt
Modulus(G) : GrpDrchNF -> RngOrdIdl, SeqEnum
Modulus(OQ) : RngFunOrdRes -> RngFunOrdIdl
Modulus(R) : RngIntRes -> RngInt
Modulus(OQ) : RngOrdRes -> RngOrdIdl
Modulus(Q) : RngUPolRes -> RngUPolElt
Moebius
MoebiusMu(n) : RngIntElt -> RngIntElt
MoebiusStrip() : -> SmpCpx
MoebiusMu
MoebiusMu(n) : RngIntElt -> RngIntElt
MoebiusStrip
MoebiusStrip() : -> SmpCpx
Molien
MolienSeries(G) : GrpMat -> FldFunUElt
MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
molien
Molien Series (INVARIANT THEORY)
MolienSeries
MolienSeries(G) : GrpMat -> FldFunUElt
RngInvar_MolienSeries (Example H117E5)
MolienSeriesApproximation
MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
Monic
IsMonic(L) : RngDiffOpElt -> BoolElt
IsWeaklyMonic(L) : RngDiffOpElt -> BoolElt
MonicDifferentialOperator(L) : RngDiffOpElt -> RngDiffOpElt
MonicModel(F) : FldFun -> FldFun
MonicModel(f, q) : RngUPolElt, RngIntElt -> RngUPolElt, SeqEnum
ResolveAffineMonicSurface(s) : RngUPolElt -> List, RngIntElt
monic
Monic Models (HYPERELLIPTIC CURVES)
monic-models
Monic Models (HYPERELLIPTIC CURVES)
MonicDifferentialOperator
MonicDifferentialOperator(L) : RngDiffOpElt -> RngDiffOpElt
MonicModel
MonicModel(F) : FldFun -> FldFun
MonicModel(f, q) : RngUPolElt, RngIntElt -> RngUPolElt, SeqEnum
Monitored
MonitoredDistributedWorker(host, port, work_function) : MonStgElt, RngIntElt, UserProgram ->
MonitoredDistributedWorker
MonitoredDistributedWorker(host, port, work_function) : MonStgElt, RngIntElt, UserProgram ->
monitoring
Monitoring and Respawning Workers (PARALLELISM)
monitoring-respawning
Monitoring and Respawning Workers (PARALLELISM)
Monodromy
MonodromyPairing(P, Q) : ModSSElt, ModSSElt -> RngIntElt
MonodromyRepresentation(X): RieSrf -> SeqEnum
MonodromyWeights(M) : ModSS -> SeqEnum
ModSS_Monodromy (Example H144E9)
monodromy
The Monodromy Pairing (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
monodromy-pairing
The Monodromy Pairing (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
MonodromyPairing
MonodromyPairing(P, Q) : ModSSElt, ModSSElt -> RngIntElt
MonodromyRepresentation
MonodromyRepresentation(X): RieSrf -> SeqEnum
MonodromyWeights
MonodromyWeights(M) : ModSS -> SeqEnum
Monoid
FreeMonoid(n) : RngIntElt -> MonFP
Monoid< generators | relations > : MonFPElt, ..., MonFPElt, Rel, ..., Rel -> MonFP
OrderedIntegerMonoid() : -> MonOrd
OrderedMonoid(P) : MonPlc -> MonOrd
OrderedMonoid(M) : MonPlc -> MonOrd;
OrderedMonoid(n) : RngIntElt -> MonOrd
PlacticIntegerMonoid() : -> MonOrd
PlacticMonoid(O) : MonOrd -> MonOrd
TableauIntegerMonoid() : -> MonTbl
TableauMonoid(O) : MonOrd -> MonTbl
SgpFP_Monoid (Example H84E2)
monoid
Ordered Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)
Plactic Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)
Tableau Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)
Contents
Index (m)
Search
V2.28, 13 July 2023