- Introduction
- Constructions for A-Modules
- Constructions for K[G]-Modules
- General K[G]-Modules
- Natural K[G]-Modules
- Permutation Modules
- PermutationModule(G, H, K) : Grp, Grp, Fld -> ModGrp
- PermutationModule(G, K) : Grp, Fld -> ModGrp
- PermutationModule(G, V) : Grp, ModTupFld -> ModGrp
- PermutationModule(G, u) : Grp, ModTupFldElt -> ModGrp
- Example ModAlg_CreateM12 (H97E5)
- Example ModAlg_CreateA7 (H97E6)
- Action on an Elementary Abelian Section
- Action on a Polynomial Ring
- GModule(G, P, d) : Grp, RngMPol, RngIntElt -> ModGrp, Map, @ RngMPolElt @
- GModule(G, I, J) : Grp, RngMPol, RngMPol -> ModGrp, Map, @ RngMPolElt @
- GModule(G, Q) : Grp, RngMPolRes -> ModGrp, Map, @ RngMPolElt @
- Example ModAlg_CreatePolyAction (H97E8)
- New Modules from Old
- Direct Sums and Tensor Products
- DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
- DirectSum(Q) : [ ModRng ] -> ModRng, [ Map ], [ Map ]
- TensorProduct(M, N) : ModMat, ModMat -> ModMat
- TensorProduct(M, N) : ModGrp, ModGrp -> ModGrp
- TensorPower(M, n) : ModMat, RngIntElt -> ModMat
- ExteriorSquare(M) : ModMat -> ModMat
- SymmetricSquare(M) : ModMat -> ModMat
- GTensorProduct(M, N) : ModGrp, ModGrp -> ModGrp, Map
- GTensorProduct(M, N, H) : ModGrp, ModGrp, Grp -> ModGrp, Map
- Induction, Restriction and Inflation for K[G]-Modules
- The Fixed-point Spaces for a K[G]-Module
- Change Ring and Base Change
- Writing a K[G]-Module over a Smaller Field
- Rewriting Over a Smaller Degree Finite Field
- IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
- IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp
- WriteOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp, Map
- AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
- ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
- ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
- ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
- Rewriting Over a Smaller Degree Number Field
- Accessing Module Information
- Group Representations
- Module Elements
- Submodules and Quotient Modules
- Properties of a Module
- Structure of a Module
- Splitting a Module
- Composition Series
- Minimal and Maximal Submodules
- Socle Series
- Decomposition and Complements
- IsDecomposable(M) : ModRng -> BoolElt, ModRng, ModRng
- IsSemisimple(M) : ModGrp -> BoolElt
- DirectSumDecomposition(M) : ModRng -> [ ModRng ]
- RelativeDecomposition(M, T) : ModRng, ModRng) -> ModRng, ModRng
- HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
- Complements(M, S) : ModGrp, ModGrp -> [ ModGrp ]
- Example ModAlg_Decomposable (H97E20)
- Characters and Character Tables
- Constructing All Irreducible K[G]-Modules
- Lattice of Submodules
- Homomorphisms
- Creating Homomorphisms and Hom Spaces
- hom< M -> N | X > : ModRng, ModRng, ModMatElt -> Map
- Hom(M, N) : ModRng, ModRng -> ModMatRng
- GHom(M, N) : ModGrp, ModGrp -> ModMatGrp
- GHomOverCentralizingField(M, N) : ModGrp, ModGrp -> ModMatGrp
- AHom(M, N) : ModRng, ModRng -> ModMatRng
- HomMod(M, N) : ModGrp, ModGrp -> ModGrp
- H ! f : ModMatRng, Map -> ModMatRngElt
- IsModuleHomomorphism(X) : ModMatFldElt -> BoolElt
- Example ModAlg_EndoRing (H97E25)
- Example ModAlg_CreateHomGHom (H97E26)
- Isomorphism and Similarity
- Isomorphism
- IsIsomorphic(M, N) : ModRng, ModRng -> ModRng, ModRng, BoolElt, AlgMatElt
- SummandIsomorphism(M, N) : ModRng, ModRng -> ModRng, ModRng, Map, Map
- Similarity of Cyclic Algebras and their Modules
- The Endomorphism Ring
- Projective Indecomposable Modules
- Cohomology and Extensions
- Cohomology
- CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
- CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
- CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
- CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
- CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
- Example ModAlg_Cohomology Group (H97E30)
- Example ModAlg_Cohomological Dimension (H97E31)
- Extensions of Modules
- Ext(M, N) : ModGrp, ModGrp -> ModTupFld
- Extension(M, N, e, r) : ModGrp, ModGrp, ModTupFldElt, Map -> ModGrp, ModMatGrpElt, ModMatGrpElt
- MaximalExtension(M, N, E, r) : ModGrp, ModGrp, ModTupFld, map -> ModGrp
- MaximalExtension(M, N) : ModGrp, ModGrp -> ModGrp
- MaximalExtension(~M, N) : ModGrp, ModGrp ->
- Example ModAlg_ModuleExtensions (H97E32)
- LowDimensionalModules(G, K, n) : Grp, Fld, RngIntElt -> SeqEnum
- Vertex and Source of an Indecomposable Module
- Bimodules
- Enumerating All Irreducible Modules
- Modules over a General Algebra
- Bibliography
V2.28, 13 July 2023