- length
- length-index
- Lengthen
- LengthenCode
- Lengths
- lengths
- Lens
- LensSpace
- Leons
- LeonsAttack
- Less
- Level
- level
- level1-modform
- Levels
- Levenshtein
- LevenshteinBound
- Levi
- Lex
- lex
- Lexicographical
- Lexicographically
- LexicographicalOrdering
- LexProduct
- lfsr
- LFSRSequence
- LFSRStep
- lfunc-hecke
- LFunction
- Lfunction
- LFunctionbyhand
- LGet
- LGetCoefficients
- lglex
- lgrevlex
- LHS
- Li
- LIBRARIES
- Libraries
- Library
- LIBRARY_
- Lichtenbaum
- lideal
- lideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
- RightIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
- rideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrd
- ideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
- LeftIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
- ideal<A | L> : AlgFr, List -> AlgFr
- lideal< cat : A | L> : Cat, AlgGrp, List -> AlgGrp, Map
- lideal<O | M> : AlgAssVOrd, PMat -> AlgAssVOrdIdl
- lideal<O | E> : AlgAssVOrd, [AlgAssVOrdElt] -> AlgAssVOrdIdl
- lideal< A | L > : AlgGen, List -> AlgGen, Map
- lideal<R | L> : AlgMat, List -> AlgMat
- lideal<G | L1, ..., Lr> : SgpFP, SgpFPElt, ..., SgpFPElt -> SgpFPIdl
- Lie
- AbelianLieAlgebra(R, n) : Rng, RngIntElt -> AlgLie
- AffineLieAlgebra(C, F) : AlgMatElt, Fld -> AlgKac
- AffineLieAlgebra(N, F) : MonStgElt, Fld -> AlgKac
- Algebra(M) : AlgMatLie -> AlgLie, Map
- AllNilpotentLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
- AllSolvableLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
- ContactLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie
- ExtremalLieAlgebra(K, G) : Rng, GrphUnd -> AlgLieExtr
- ExtremalLieAlgebra(K, n) : Rng, RngIntElt -> AlgLieExtr
- FiniteLieAlgebra(L) : AlgKac -> AlgLie
- FreeLieAlgebra(F, n) : Rng, RngIntElt -> AlgFPLie
- GroupOfLieType(L) : AlgLie -> GrpLie
- GroupOfLieType(C, k) : AlgMatElt, Rng -> GrpLie
- GroupOfLieType(W, k) : GrpMat, Rng -> GrpLie
- GroupOfLieType(W, k) : GrpPermCox, Rng -> GrpLie
- GroupOfLieType(W, R) : GrpPermCox, Rng -> GrpLie
- GroupOfLieType(W, q) : GrpPermCox, RngIntElt -> GrpLie
- GroupOfLieType(N, k) : MonStgElt, Rng -> GrpLie
- GroupOfLieType(N, q) : MonStgElt, RngIntElt -> GrpLie
- GroupOfLieType(C, k) : Mtrx, Rng -> GrpLie
- GroupOfLieType(C, q) : Mtrx, RngIntElt -> GrpLie
- GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
- GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
- GroupOfLieType(R, q) : RootDtm, RngIntElt -> GrpLie
- GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
- GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
- GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie
- GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
- HamiltonianLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie
- HeisenbergLieAlgebra(T) : TenSpcElt -> AlgLie
- IsLie(A) : AlgGen -> BoolElt
- IsRestrictable(L) : AlgLie -> BoolElt, Map
- JenningsLieAlgebra(G) : Grp -> AlgLie, SeqEnum
- LieAlgebra(A) : AlgAss -> AlgGen, Map
- LieAlgebra(A) : AlgAss -> AlgLie
- LieAlgebra(A) : AlgAss -> AlgLie, Map
- LieAlgebra(A) : AlgMat -> AlgLie
- LieAlgebra(C, k) : AlgMatElt, Rng -> AlgLie
- LieAlgebra(G) : GrpLie -> AlgLie, Map
- LieAlgebra(G) : GrpLie -> AlgLie, Map
- LieAlgebra(W, R) : GrpMat, Rng -> AlgLie
- LieAlgebra(W, R) : GrpPermCox, Rng -> AlgLie
- LieAlgebra(T, k) : MonStgElt, Rng -> AlgLie
- LieAlgebra(N, k, p) : MonStgElt, Rng, GrpPermElt -> AlgLie
- LieAlgebra<R, n | Q : parameters > : Rng, RngIntElt, SeqEnum -> AlgLie
- LieAlgebra<R, n | T : parameters > : Rng, RngIntElt, SeqEnum -> AlgLie
- LieAlgebra< t | T : parameters > : SeqEnum, SeqEnum -> AlgLie
- LieAlgebra< R, n | Q > : Rng, RngIntElt, SeqEnum -> AlgLie
- LieAlgebra(R, k) : RootDtm, Rng -> AlgLie
- LieAlgebra(R, k) : RootSys, Rng -> AlgLie
- LieAlgebra(R) : [ AlgFPLieElt ] -> AlgLie, SeqEnum, SeqEnum, Map
- LieAlgebraHomorphism(phi,k) : Map, Rng -> AlgLie
- LieAlgebraOfDerivations(L) : AlgLie -> AlgLie, Rec
- LieBracket(a, b) : AlgAssElt, AlgAssElt -> AlgAssElt
- LieCharacteristic(G : parameters) : Grp -> RngIntElt
- LieConstant_epsilon(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_eta(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_N(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_p(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_q(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_M(R, r, s, i) : RootDtm, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_C(R, i, j, r, s) : RootDtm, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- LieRepresentationDecomposition(R, v) : RootDtm, ModTupRngElt -> LieRepDec
- LieRepresentationDecomposition(R, Wt, Mp) : RootDtm, SeqEnum, SeqEnum -> LieRepDec
- LieRootMatrix(R,α,B) : RootDtm,ModTupFldElt,SetIndx -> AlgMatElt
- LieType(G, p : parameters) : GrpMat, RngIntElt -> BoolElt, Tup
- LieTypeGenerators(t,k,q) : MonStgElt, RngIntElt, RngIntElt -> SeqEnum,SeqEnum
- LieTypeRewrite(t,r,q,X,Y,g) : MonStgElt,RngIntElt,RngIntElt,SeqEnum,SeqEnum,GrpMatElt -> BoolElt, GrpSLPElt
- MatrixLieAlgebra(A) : AlgMat -> AlgMatLie
- MatrixLieAlgebra(C, k) : AlgMatElt, Rng -> AlgLie
- MatrixLieAlgebra(T, k) : MonStgElt, Rng -> AlgLie
- MatrixLieAlgebra(R, n) : Rng, RngIntElt -> AlgMatLie
- MatrixLieAlgebra(R, k) : RootSys -> GrpMat
- MelikianLieAlgebra(F, n1, n2) : Fld, RngIntElt, RngIntElt -> AlgLie, Map
- NilpotentLieAlgebra( F, r, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
- SimpleGroupOfLieType(X, n, k) : MonStgElt, RngIntElt, Rng -> GrpLie
- SimpleGroupOfLieType(X, n, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
- SolvableLieAlgebra( F, n, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
- SpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, Map, Map
- StandardLieRepresentation(t,r) : MonStgElt, RngIntElt -> SeqEnum, SeqEnum
- TrivialLieRepresentationDecomposition(R) : RootDtm -> LieRepDec
- TwistedGroupOfLieType(t, r, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
- TwistedGroupOfLieType(c) : OneCoC -> GrpLie
- TwistedGroupOfLieType(R, k, K) : RootDtm, Rng, Rng-> GrpLie
- TwistedGroupOfLieType(R, q, r) : RootDtm, RngIntElt, RngIntElt -> GrpLie
- TwistedLieAlgebra(R, k) : RootDtm, Rng -> AlgLie
- WittLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, Map
V2.28, 13 July 2023