About
Calculator
Ordering
FAQ
Download
Download Magma
Databases
User Contributions
Documentation
Handbook
Overview
Release Notes
Discovering Maths with Magma
First Steps in Magma (pdf)
Solving Problems with Magma (pdf)
Acknowledgements
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsHyperellipticCurve
IsHyperellipticCurve(X) : Sch -> BoolElt,CrvHyp
IsHyperellipticCurve([f, h]) : [ RngUPolElt ] -> BoolElt, CrvHyp
IsHyperellipticCurveOfGenus
IsHyperellipticCurveOfGenus(g, [f, h]) : RngIntElt, [RngUPolElt] -> BoolElt, CrvHyp
IsHyperellipticWeierstrass
IsHyperellipticWeierstrass(C) : Crv -> BoolElt
IsHypersurface
IsHypersurface(X) : Sch -> BoolElt, RngMPolElt
IsHypersurfaceDivisor
IsHypersurfaceDivisor(D) : DivCrvElt -> BoolElt, RngElt, RngIntElt
IsHypersurfaceSingularity
IsHypersurfaceSingularity(p,prec) : Pt, RngIntElt -> BoolElt, RngMPolElt, SeqEnum, Rec
IsId
IsIdentity(g) : GrpElt -> BoolElt
IsId(g) : GrpElt -> BoolElt
IsId(g) : GrpPermElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : MonRWSElt -> BoolElt
IsId(P) : PtEll -> BoolElt
IsIdentity(u) : GrpAbElt -> BoolElt
IsIdentity(g) : GrpGPCElt -> BoolElt
IsIdentity(g) : GrpMatElt -> BoolElt
IsIdentity(g) : GrpPCElt -> BoolElt
IsIdentity(u: parameters) : GrpBrdElt -> BoolElt
IsIdeal
IsIdeal(A, S) : AlgBas, ModTupFld -> Bool
IsIdeal(S) : AlgGrpSub -> BoolElt
IsIdeal(T, S) : TenSpcElt, TenSpcElt -> BoolElt
IsIdempotent
IsIdempotent(a) : AlgGenElt -> BoolElt
IsIdempotent(x) : RngElt -> BoolElt
IsIdentical
IsIdentical(A, B) : LatNF, LatNF -> BoolElt
IsIdentical(R, F) : RngDiff, RngDiff -> BoolElt
IsIdentical(R, F) : RngDiffOp, RngDiffOp -> BoolElt
IsIdentical(f, g) : RngSerElt, RngSerElt -> BoolElt
IsIdenticalPresentation
IsIdenticalPresentation(G, H) : GrpGPC, GrpGPC -> BoolElt
IsIdenticalPresentation(G, H) : GrpPC, GrpPC -> BoolElt
IsIdentity
IsIdentity(g) : GrpElt -> BoolElt
IsId(g) : GrpElt -> BoolElt
IsId(g) : GrpPermElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : MonRWSElt -> BoolElt
IsId(P) : PtEll -> BoolElt
IsIdentity(u) : GrpAbElt -> BoolElt
IsIdentity(w, D1) : GrpFPElt, Rec -> BoolElt, GrpFPElt, SeqEnum, SeqEnum
IsIdentity(g) : GrpGPCElt -> BoolElt
IsIdentity(g) : GrpMatElt -> BoolElt
IsIdentity(g) : GrpPCElt -> BoolElt
IsIdentity(f) : Map -> BoolElt
IsIdentity(u: parameters) : GrpBrdElt -> BoolElt
IsIdentity(f) : QuadBinElt -> BoolElt
IsZero(P) : JacHypPt -> BoolElt
IsInArtinSchreierRepresentation
IsInArtinSchreierRepresentation(K) : FldFun -> BoolElt, FldFunElt
IsInCorootSpace
IsInCorootSpace(R,v) : RootDtm, ModTupFldElt -> BoolElt
IsInRootSpace(R,v) : RootDtm, ModTupFldElt -> BoolElt
IsIndecomposable
IsIndecomposable(A) : GalRep -> BoolElt
IsIndecomposable(G) : GrpPC -> BoolElt
IsIndecomposable(M, B) : ModBrdt, RngIntElt -> BoolElt
IsIndecomposable(t) : TenSpcElt -> BoolElt
IsIndefinite
IsIndefinite(A) : AlgQuat -> BoolElt
IsDefinite(A) : AlgQuat -> BoolElt
IsIndependent
IsIndependent(Q) : [ AlgGen ] -> BoolElt
IsIndependent(Q) : [ AlgLieElt ] -> BoolElt
IsIndependent(Q) : [ ModTupFldElt ] -> BoolElt
IsIndependent(S) : { ModTupFldElt } -> BoolElt
IsIndivisibleRoot
IsIndivisibleRoot(R, r) : RootStr, RngIntElt -> BoolElt
IsIndivisibleRoot(R, r) : RootSys, RngIntElt -> BoolElt
IsInduced
IsInduced(AmodB) : GGrp -> BoolElt, GGrp, GGrp, Map, Map
IsInert
IsInert(P) : RngFunOrdIdl -> BoolElt
IsInert(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsInert(P) : RngOrdIdl -> BoolElt
IsInert(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsInertial
IsInertial(f) : RngUPolElt -> BoolElt
IsInertial(f) : RngUPolXPadElt -> BoolElt
IsInfinite
IsInfinite(G) : GrpAb -> BoolElt
IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
IsInfinite(z) : SpcHypElt -> BoolElt
IsInfiniteFPGroup
IsInfiniteFPGroup(G : parameters) : GrpFP -> BoolElt
IsInflectionPoint
IsFlex(C, p) : Sch,Pt -> BoolElt,RngIntElt
IsInflectionPoint(p) : Pt -> BoolElt,RngIntElt
IsInformationSet
IsInformationSet(C, I) : CodeLinRng, [RngIntElt] -> BoolElt, BoolElt
IsInImage
IsInImage(f, p) : Map, RngMPolElt -> [ BoolElt ]
IsInInterior
IsInInterior(v,C) : TorLatElt,TorCon -> BoolElt
IsInjective
IsInjective(f) : MapChn -> BoolElt
IsInjective(phi) : MapModAbVar -> BoolElt
IsInjective(M) : ModAlg -> BoolElt, SeqEnum
IsInjective(a) : ModMatRngElt -> BoolElt
IsInjective(f) : ModMPolHom -> BoolElt
Contents
Index (i)
Search
V2.28, 28 February 2025