- Curtis
- curv
- Curve
- AdjointLinearSystemForNodalCurve(C, d) : Crv, RngIntElt -> LinearSys
- AdjointIdealForNodalCurve(C) : Crv -> RngMPol
- AssociatedEllipticCurve(qi) : Crv -> CrvEll, Map
- AssociatedEllipticCurve(f) : RngUPolElt -> CrvEll, Map
- AutomorphismGroupOfHyperellipticCurve(X) : CrvHyp -> GrpPerm, Map
- AutomorphismGroupOfHyperellipticCurve(X, Autos) : CrvHyp, List -> GrpPerm, Map
- AutomorphismsOfHyperellipticCurve(X) : CrvHyp -> List
- BaseCurve(X) : CrvMod -> CrvMod, MapSch
- CanonicalCurve(H) : HypGeomData -> Crv
- CryptographicCurve(F) : FldFin -> CrvEll, PtEll, RngIntElt, RngIntElt
- Curve(C) : Code -> Crv
- Curve(S) : DiffCrv -> Crv
- Curve(a) : DiffCrvElt -> Crv
- Curve(Div) : DivCrv -> Crv
- Curve(D) : DivCrvElt -> Crv
- Curve(F) : FldFunFracSch -> Crv
- Curve(d,p,m) : FldRatElt,GRPtS,FldRatElt -> GRCrvS
- Curve(A) : GrpAutCrv -> Crv
- Curve(J) : JacHyp -> CrvHyp
- Curve(model) : ModelG1 -> Crv
- Curve(P) : PlcCrv -> Crv
- Curve(P) : PlcCrvElt -> Crv
- Curve(p) : Pt -> Crv
- Curve(p) : Pt -> Crv
- Curve(X) : Sch -> Crv
- Curve(X) : Sch -> Crv
- Curve(A,I) : Sch, RngMPol -> Crv
- Curve(A,f) : Sch, RngMPolElt -> CrvPln
- Curve(X,S) : Sch, SeqEnum -> Crv
- Curve(G) : SchGrpEll -> CrvEll
- Curve(P) : SetPt -> Crv
- Curve(P) : SetPt -> Crv
- Curve(H) : SetPtEll -> CrvEll
- CurveQuotient(G): GrpAutCrv -> Crv, MapSch
- EllipticCurve(C) : Crv -> CrvEll, MapSch
- EllipticCurve(C, pl) : Crv, PlcCrvElt -> CrvEll, MapSch
- EllipticCurve(C, P) : Crv, Pt -> CrvEll, MapSch
- EllipticCurve(D, S): DB, MonStgElt -> CrvEll
- EllipticCurve(D, N, I, J): DB, RngIntElt, RngIntElt, RngIntElt -> CrvEll
- EllipticCurve(GR) : GrossenChar -> CrvEll
- EllipticCurve(H) : HypGeomData -> CrvEll
- EllipticCurve(A) : ModAbVar -> CrvEll
- EllipticCurve(f) : ModFrmElt -> CrvEll
- EllipticCurve(M) : ModSym -> CrvEll
- EllipticCurve(f) : RngUPolElt -> CrvEll
- EllipticCurve(C) : Sch -> CrvEll, MapSch
- EllipticCurve([a, b]) : [ RngElt ] -> CrvEll
- EllipticCurveDatabase(: parameters) : -> DB
- EllipticCurveFromPeriods(om: parameters) : [ FldComElt ] -> CrvEll
- EllipticCurveFromjInvariant(j) : RngElt -> CrvEll
- EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
- EllipticCurveSearch(N, Effort) : [], RngIntElt -> SeqEnum
- EmbedPlaneCurveInP3(C) : Crv -> Sch, MapSch
- ExistsModularCurveDatabase(t) : MonStgElt -> BoolElt
- FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
- Genus5PlaneCurveModel(C) : Crv -> BoolElt, MapSch
- Genus6PlaneCurveModel(C) : Crv -> BoolElt, MapSch
- HilbertPolynomialOfCurve(g,m) : RngIntElt,RngIntElt -> RngUPolElt
- HyperellipticCurve(E) : CrvEll -> CrvHyp, Map
- HyperellipticCurve(H) : HypGeomData -> CrvHyp
- HyperellipticCurve(P, f, h) : Prj, RngUPolElt, RngUPolElt -> CrvHyp
- HyperellipticCurve(f, h) : RngUPolElt, RngUPolElt -> CrvHyp
- HyperellipticCurveFromIgusaClebsch(S) : SeqEnum -> CrvHyp
- HyperellipticCurveFromIgusaInvariants(S) : SeqEnum -> CrvHyp, GrpPerm
- HyperellipticCurveFromShiodaInvariants(JI) : SeqEnum -> CrvHyp, GrpPerm
- HyperellipticCurveOfGenus(g, f, h) : RngIntElt, RngUPolElt, RngUPolElt -> CrvHyp
- IsConstantCurve(E) : CrvEll[FldFunRat] -> BoolElt, CrvEll
- IsCurve(X) : Sch -> BoolElt,Crv
- IsCurve(X) : Sch -> BoolElt,Crv
- IsEllipticCurve(C) : CrvHyp -> BoolElt, CrvEll, MapIsoSch, MapIsoSch
- IsEllipticCurve(C) : CrvHyp -> BoolElt, CrvEll, MapIsoSch, MapIsoSch
- IsEllipticCurve([a, b]) : [ RngElt ] -> BoolElt, CrvEll
- IsHyperellipticCurve(X) : Sch -> BoolElt,CrvHyp
- IsHyperellipticCurve([f, h]) : [ RngUPolElt ] -> BoolElt, CrvHyp
- IsHyperellipticCurveOfGenus(g, [f, h]) : RngIntElt, [RngUPolElt] -> BoolElt, CrvHyp
- IsInSmallModularCurveDatabase(N) : RngIntElt -> Boolelt
- IsModularCurve(X) : Sch -> BoolElt
- IsNodalCurve(C) : Crv-> BoolElt
- IsPlaneCurve(X) : Sch -> BoolElt, CrvPln
- IsRationalCurve(S) : Sch -> BoolElt, CrvRat
- IsRationalCurve(X) : Sch -> BoolElt,CrvRat
- IsSubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> BoolElt,GRCrvK
- ModularCurve(D, N) : DB, RngIntElt -> CrvMod
- ModularCurve(X,t,N) : Sch, MonStgElt, RngIntElt -> CrvMod
- ModularCurveDatabase(t) : MonStgElt -> DB
- ModularCurveQuotient(N,A) : RngIntElt, [RngIntElt] -> Crv
- ModularHyperellipticCurve(B) : [ModSym] -> BoolElt, RngUPol
- ModularHyperellipticCurve(F) : [RngSerPowElt] -> BoolElt, RngUPol
- ModularNonHyperellipticCurveGenus3(F) : [RngSerPowElt] -> BoolElt, RngMPolElt
- NewModularHyperellipticCurve(B) : [ModSym] -> BoolElt, RngUPol
- NewModularHyperellipticCurve(F) : [RngSerPowElt] -> BoolElt, RngUPol
- NewModularNonHyperellipticCurveGenus3(B) : [ModSym] -> BoolElt, RngMPolElt
- NewModularNonHyperellipticCurveGenus3(F) : [RngSerPowElt] -> BoolElt, RngMPolElt
- ParametrizeOrdinaryCurve(C) : Crv -> MapSch
- RandomCurveByGenus(g, K) : RngIntElt, Fld -> Crv
- RandomNodalCurve(d, g, P) : RngIntElt, RngIntElt, Prj -> CrvPln
- RandomOrdinaryPlaneCurve(d, S, P) : RngIntElt, SeqEnum, Prj -> CrvPln, RngMPol
- RationalCurve(X, f) : Prj, RngMPolElt -> CrvRat
- ReducePlaneCurve(C) : Crv -> Crv, Mtrx
- ReducedAutomorphismGroupOfHyperellipticCurve(X, Autos) : CrvHyp , List -> GrpPerm, Map
- ReducedAutomorphismGroupOfHyperellipticCurve(X) : CrvHyp -> GrpPerm, Map
- ReducedAutomorphismsOfHyperellipticCurve(X) : CrvHyp -> List
- ResolveAffineCurve(p) : RngMPolElt -> List, List, List, RngIntElt
- ResolveProjectiveCurve(p) : RngMPolElt -> List, List, List, RngIntElt
- Scheme(P) : SetPtEll -> CrvEll
- SmallModularCurve(N) : RngIntElt -> Crv
- SubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> GRCrvK
- SupersingularEllipticCurve(K) : FldFin -> CrvEll
- ZetaFunctionOfCurveModel(C) : Crv[FldFin] -> FldFunRatUElt
V2.28, 13 July 2023