Modular Symbols

ModularSymbols(M) : ModFrm -> SeqEnum
The sequence of characteristic 0 spaces of modular symbols with given sign associated to the space of modular forms M, when this makes sense.
ModularSymbols(M, sign) : ModFrm, RngIntElt -> ModSym
The sequence of characteristic 0 spaces of modular symbols with given sign associated to the space of modular forms M, when this makes sense.

Example ModFrm_ModularSymbols (H141E22)

> M := ModularForms(Gamma0(389),2);
> ModularSymbols(M,+1);
[
    Full Modular symbols space of level 389, weight 2, and dimension
    33
]
> ModularSymbols(M,-1);
[
    Full Modular symbols space of level 389, weight 2, and dimension
    32
]
> M := ModularForms(Gamma1(13),2);
> ModularSymbols(M);
[
    Full Modular symbols space of level 13, weight 2, and dimension 1,
    Full Modular symbols space of level 13, weight 2, character $.1,
    and dimension 0,
    Full Modular symbols space of level 13, weight 2, character $.1,
    and dimension 4,
    Full Modular symbols space of level 13, weight 2, character $.1,
    and dimension 0,
    Full Modular symbols space of level 13, weight 2, character $.1^2,
    and dimension 2,
    Full Modular symbols space of level 13, weight 2, character $.1,
    and dimension 2
]
> Basis($1)[1];
-1/6*{-7/15, -6/13} + -1/6*{-7/18, -5/13} + -1/6*{-5/16, -4/13} +
-1/6*{-4/17, -3/13} + -1/6*{-3/19, -2/13} + -1/6*{0, oo}
V2.28, 13 July 2023