About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (c)
Search
code
ADDITIVE CODES
ALGEBRAIC-GEOMETRIC CODES
Constructing Nearfields (NEARFIELDS)
Construction from Groups, Codes and Designs (GRAPHS)
Graphs Constructed from Designs (GRAPHS)
Incidence Structures, Graphs and Codes (INCIDENCE STRUCTURES AND DESIGNS)
Lattices from Linear Codes (LATTICES)
LINEAR CODES OVER FINITE FIELDS
LINEAR CODES OVER FINITE RINGS
LINEAR CODES OVER THE INTEGER RESIDUE RING Z
4
LOW DENSITY PARITY CHECK CODES
Planes, Graphs and Codes (FINITE PLANES)
QUANTUM CODES
The Code Space (ADDITIVE CODES)
The Code Space (LINEAR CODES OVER FINITE FIELDS)
code-design
Graphs Constructed from Designs (GRAPHS)
code-elts
CodeRng_code-elts (Example H164E12)
code-subspace
The Code Space (ADDITIVE CODES)
The Code Space (LINEAR CODES OVER FINITE FIELDS)
code-z4-perm-group
CodeZ4_code-z4-perm-group (Example H165E26)
CodeAddFromCode
CodeAdd_CodeAddFromCode (Example H166E3)
CodeAddFromCodeFail
CodeAdd_CodeAddFromCodeFail (Example H166E4)
CodeAddFromMatrix
CodeAdd_CodeAddFromMatrix (Example H166E2)
CodeComplement
CodeComplement(C, C1) : Code, Code -> Code
CodeComplement(C, S) : Code, Code -> Code
CodeFromMatrix
CodeFld_CodeFromMatrix (Example H161E2)
CodeRng_CodeFromMatrix (Example H164E2)
Codegree
Codegree(P) : TorPol -> RngIntElt
Degree(P) : TorPol -> RngIntElt
Codegrees
BasicCodegrees(W) : GrpFPCox -> RngIntElt
BasicCodegrees(W) : GrpMat -> RngIntElt
Codes
ReedMullerCodesLRMZ4(r, m) : RngIntElt, RngIntElt -> SeqEnum
ReedMullerCodesRMZ4(s, m) : RngIntElt, RngIntElt -> Tup
codes
Algebraic Geometric Codes (ALGEBRAIC CURVES)
Best Known Linear Codes (LINEAR CODES OVER FINITE FIELDS)
Best Known Quantum Codes (QUANTUM CODES)
Combining Codes (ADDITIVE CODES)
Combining Codes (LINEAR CODES OVER FINITE FIELDS)
CSS Codes (QUANTUM CODES)
Derived Binary Codes (LINEAR CODES OVER THE INTEGER RESIDUE RING Z
4
)
Linear Codes (PARALLELISM)
Maximum Distance Separable Codes (LINEAR CODES OVER FINITE FIELDS)
New Codes From Old (QUANTUM CODES)
Plane_codes (Example H150E18)
CodeToString
CodeToString(n) : RngIntElt -> MonStgElt
CodeWeightDistribution
Par_CodeWeightDistribution (Example H5E25)
codeword-ops
CodeRng_codeword-ops (Example H164E13)
Codifferent
Codifferent(I) : RngFunOrdIdl -> RngFunOrdIdl
Codifferent(I) : RngOrdFracIdl -> RngOrdFracIdl
Codimension
ApparentEquationDegrees(X) : GRSch -> RngIntElt
ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
BettiNumbers(X) : GRSch -> RngIntElt
ApparentCodimension(X) : GRSch -> RngIntElt
ApparentCodimension(f) : RngUPolElt -> RngIntElt
CheckCodimension(X) : GRSch -> BoolElt
Codimension(X) : GRSch -> RngIntElt
Codimension(X) : Sch -> RngIntElt
ConesOfCodimension(F,i) : TorFan,RngIntElt -> SeqEnum
codingcrypto
Coding Theory and Cryptography (LINEAR CODES OVER FINITE FIELDS)
Codomain
Codomain(H) : Hmtp -> TenSpcElt
Codomain(H) : HomModAbVar -> ModAbVar
Codomain(f) : Map -> Grp
Codomain(f) : Map -> Grp
Codomain(f) : Map -> Grp
Codomain(f) : Map -> Grp
Codomain(f) : Map -> Str
Codomain(f) : MapIsoSch -> CrvHyp
Codomain(phi) : MapModAbVar -> ModAbVar
Codomain(f) : MapSch -> Sch
Codomain(f) : ModMatFldElt -> ModAlg
Codomain(S) : ModMatRng -> ModTupRng
Codomain(a) : ModMatRngElt -> ModTupRng
Codomain(a) : ModMatRngElt -> ModTupRng
Codomain(f) : ModMPolHom -> ModMPol
Codomain(f) : ShfHom -> ShfCoh
Codomain(T) : TenSpcElt -> Any
Domain(A) : GrpLieAuto -> GrpLie
Domain(P) : PowMap -> Str
coeff
Coefficients and Terms (DIFFERENTIAL RINGS)
Contents
Index (c)
Search
V2.28, 13 July 2023