- Circulant
- Class
- BrauerClass(M) : ModSym -> SeqEnum
- CalculateCanonicalClass(~g) : GrphRes ->
- CanonicalClass(g) : GrphRes -> SeqEnum
- CanonicalClass(X) : TorVar -> DivTorElt
- Class(G, H) : GrpFin, GrpFin -> { GrpFin }
- Class(H, x) : GrpFin, GrpFinElt -> { GrpFinElt }
- Class(H, x) : GrpMat, GrpMatElt -> { GrpMatElt }
- Class(H, g) : GrpPC, GrpPCElt -> { GrpPCElt }
- Class(H, x) : GrpPerm, GrpPermElt -> { GrpPermElt }
- ClassCentraliser(G, i) : GrpMat, RngIntElt -> GrpMat
- ClassCentraliser(G, i) : GrpPC, RngIntElt -> GrpPCElt
- ClassCentraliser(G, i) : GrpPerm, RngIntElt -> GrpPerm
- ClassField(m, G) : Map, GrpAb -> FldAb
- ClassFunctionSpace(G) : Grp -> AlgChtr
- ClassFunctionSpace(Q) : SeqEnum -> AlgChtr
- ClassGroup(C) : Crv[FldFin] -> GrpAb, Map, Map
- ClassGroup(K) : FldQuad -> GrpAb, Map
- ClassGroup(Q) : FldRat -> GrpAb, Map
- ClassGroup(F : parameters) : FldFun -> GrpAb, Map, Map
- ClassGroup(F : parameters) : FldFunG -> GrpAb, Map, Map
- ClassGroup(Q: parameters) : QuadBin -> GrpAb, Map
- ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
- ClassGroup(O) : RngFunOrd -> GrpAb, Map, Map
- ClassGroup(Z) : RngInt -> GrpAb, Map
- ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
- ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
- ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
- ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
- ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
- ClassGroupExactSequence(F) : FldFunG -> Map, Map, Map
- ClassGroupExactSequence(O) : RngFunOrd -> Map, Map, Map
- ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
- ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
- ClassGroupGetUseMemory(O) : RngOrd -> BoolElt
- ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
- ClassGroupPRank(F) : FldFunG -> RngIntElt
- ClassGroupPRank(F) : FldFunG -> RngIntElt
- ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
- ClassGroupStructure(Q: parameters) : QuadBin -> [ RngIntElt ]
- ClassMap(G) : GrpMat -> Map
- ClassMap(G) : GrpPC -> Map
- ClassMap(G: parameters) : GrpFin -> Map
- ClassMap(G: parameters) : GrpPerm -> Map
- ClassNumber(C) : Crv[FldFin] -> RngIntElt
- ClassNumber(F) : FldFun -> RngIntElt
- ClassNumber(F) : FldFunG -> RngIntElt
- ClassNumber(K) : FldQuad -> RngIntElt
- ClassNumber(Q: parameters) : QuadBin -> RngIntElt
- ClassNumber(O: parameters) : RngOrd -> RngIntElt
- ClassNumber(O) : RngFunOrd -> RngIntElt
- ClassNumberApproximation(F, e) : FldFunG, FldReElt -> FldReElt
- ClassNumberApproximationBound(q, g, e) : RngIntElt, RngIntElt, FldReElt, -> RngIntElt
- ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
- ClassRepresentative(G, x) : GrpFin, GrpFinElt -> GrpFinElt
- ClassRepresentative(G, x) : GrpMat, GrpMatElt -> GrpMatElt
- ClassRepresentative(G, x) : GrpPC, GrpPCElt -> GrpPCElt
- ClassRepresentative(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
- ClassRepresentative(I) : RngInt -> RngInt
- ClassRepresentative(I) : RngOrdFracIdl -> RngOrdFracIdl
- ClassRepresentativeFromInvariants(G, p, h, t) : GrpMat, SeqEnum, SeqEnum, FldFinElt -> GrpMatElt
- ClassTwo(p, d : parameters) : RngIntElt, RngIntElt -> SeqEnum
- ClassicalClassMap(G) : GrpMat -> Map
- ClassicalClassSize(G,g) : GrpMat, GrpMatElt -> RngIntElt
- CohomologyClass(alpha) : OneCoC -> SetIndx[OneCoC]
- ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
- ConjugationClassLength(l) : SeqEnum -> RngIntElt
- Degree(I) : RngFunOrdIdl -> RngIntElt
- DivisorClassGroup(C) : RngCox -> TorLat
- DivisorClassLattice(C) : RngCox -> TorLat
- DivisorClassLattice(X) : TorVar -> TorLat
- ExtendedCohomologyClass(alpha) : OneCoC -> SetEnum[OneCoC]
- FirstChernClassOfDesingularization(S) : Srfc -> RngIntElt[RngMPolElt]
- HasParallelClass(D) : Inc -> BoolElt, { IncBlk }
- HilbertClassField(K) : FldAlg -> FldAb
- HilbertClassField(K, p) : FldFun, PlcFunElt -> FldFunAb
- HilbertClassPolynomial(D) : RngIntElt -> RngUPolElt
- InertiaDegree(P) : PlcFunElt -> RngIntElt
- IsParallelClass(D, B, C) : Inc, IncBlk, IncBlk -> BoolElt, { IncBlk }
- IsometryGroupClassLabel(type, g) : MonStgElt, GrpMatElt -> SetMulti
- KacMoodyClass(C) : AlgMatElt -> MonStgElt, ModMatRngElt
- NextClass(~P : parameters) : GrpPCpQuotientProc ->
- NiceUnitSquareClassRepresentative(u, p) : RngElt, RngOrdIdl -> RngElt
- NilpotencyClass(G) : GrpFin -> RngIntElt
- NilpotencyClass(G) : GrpGPC -> RngIntElt
- NilpotencyClass(G) : GrpMat -> RngIntElt
- NilpotencyClass(G) : GrpPC -> RngIntElt
- NilpotencyClass(G) : GrpPerm -> RngIntElt
- PCClass(x) : GrpPCElt -> RngIntElt
- ParallelClass(P, l) : Plane, PlaneLn -> { PlaneLn }
- PicardClass(D) : DivTorElt -> TorLatElt
- PicardToClassGroupsMap(X) : TorVar -> Map
- PicardToClassLatticesMap(X) : TorVar -> Map
- QuadraticClassGroupTwoPart(K) : FldQuad -> GrpAb, Map
- RayClassField(D) : DivNumElt -> FldAb
- RayClassField(m) : Map -> FldAb
- RayClassGroup(D) : DivFunElt -> GrpAb, Map
- RayClassGroup(D) : DivNumElt -> GrpAb, Map
- RayClassGroup(I) : RngOrdIdl -> GrpAb, Map
- RayClassGroupDiscLog(y, D) : DivFunElt, DivFunElt -> GrpAbElt
- ResidueClassField(L) : FldXPad -> FldFin, Map
- ResidueClassField(P) : PlcCrvElt -> Rng
- ResidueClassField(P) : PlcFunElt -> Rng, Map
- ResidueClassField(P) : PlcNumElt -> Fld
- ResidueClassField(P) : PlcNumElt -> Fld
- ResidueClassField(I) : Rng -> Fld, Map
- ResidueClassField(I) : RngFunOrdIdl -> Rng, Map
- ResidueClassField(p) : RngIntElt -> FldFin, Map
- ResidueClassField(L) : RngLocA -> Rng, Map
- ResidueClassField(O, I) : RngOrd, RngOrdIdl -> FldFin, Map
- ResidueClassField(L) : RngPad -> FldFin, Map
- ResidueClassField(R) : RngSer -> Rng, Map
- ResidueClassField(E) : RngSerExt -> FldFin
- ResidueClassRing(m) : RngIntElt -> RngIntRes, Map
- ResidueClassRing(Q) : RngIntEltFact -> RngIntRes
- RevertClass(~P) : GrpPCpQuotientProc ->
- RingClassGroup(O) : RngOrd -> GrpAb, Map
- SetClassGroupBounds(string) : MonStgElt ->
- SetClassGroupBounds(n) : RngIntElt ->
- SetPrintClassGroupWarnings(b) : BoolElt ->
- StartNewClass(~P: parameters) : GrpPCpQuotientProc ->
- SteinitzClass(M) : ModDed -> RngOrdIdl
- SzClassMap(G) : GrpMat -> Map
- SzClassRepresentative(G, g) : GrpMat, GrpMatElt -> GrpMatElt, GrpMatElt
- TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
- UnitSquareClassReps(p) : RngOrdIdl -> SeqEnum
- WeberClassPolynomial(D) : RngIntElt -> RngUPolElt, FldFunRatUElt
- WeberToHilbertClassPolynomial(f,D) : RngUPolElt, RngIntElt -> RngUPolElt
- WeilToClassGroupsMap(C) : RngCox -> Map
V2.28, 13 July 2023