Lattice of Submodules

Let M be an A-module. Magma can construct the lattice L of all submodules of M if this is not too large. Various properties of the lattice L may then be examined. The elements of L are called submodule-lattice elements and are numbered from 1 to n where n is the cardinality of L. Once the lattice has been constructed, the result of various lattice operations, such as meet and intersection, are available without the need for any module-theoretic calculation. Certain information about M and its submodules may then be obtained by analyzing L. Given an element of L, one can easily create the submodule N of M corresponding to it and one can also create the element of L corresponding to any submodule of M.

The functions is this section apply only in the case in which A is an algebra over a finite field.

Contents

Creating Lattices
SubmoduleLattice(M) : ModRng -> SubModLat, BoolElt
    Limit: RngIntElt                    Default: 0
    CodimensionLimit: RngIntElt         Default: 
Given a K[G]-module M defined over Fq, construct the lattice L of submodules of M. If the parameter Limit is set to n, at most n submodules are calculated, and the second return value indicates whether the returned lattice L is the full lattice of submodules of M.
SubmoduleLatticeAbort(M, n) : ModRng, RngIntElt -> BoolElt, SubModLat
Given a K[G]-module M defined over Fq and a positive integer n, construct the lattice L of submodules of M, provided that the number of submodules does not exceed n. In this case the value true and the lattice L are returned. If M has more than n submodules, the function aborts and returns the value false.
SetVerbose("SubmoduleLattice", i) : MonStgElt, RngIntElt ->
Control verbose printing for the submodule lattice algorithm. The level i can be 2 for maximal printing or 1 for moderate printing. The algorithm works down a composition series of the module and a summary is printed for each level.
Submodules(M) : ModRng -> [ModRng]
    CodimensionLimit: RngIntElt         Default: Dimension(M)
Given a K[G]-module M defined over Fq, return a sequence containing all the submodules of M sorted by dimension.

Example ModAlg_CreateLattice (H97E23)

We create the lattice of submodules for the A-module GF(3)[Z6] with level 1 verbose printing turned on.

> M := PermutationModule(CyclicGroup(6), GF(3));
> SetVerbose("SubmoduleLattice", 1);
> L := SubmoduleLattice(M);
Submodule Lattice; Dimension: 6, Composition length: 6
Starting level 4; Current number of modules: 2
Starting level 3; Current number of modules: 3
Starting level 2; Current number of modules: 6
Starting level 1; Current number of modules: 9
Starting level 0; Current number of modules: 12
Change basis time: 0.010
Jacobson radical time: 0.060
Complement time: 0.070
Total time: 0.250
> #L;
16
Operations on Lattices

In the following, L is the lattice of submodules for a module M.

# L : SubModLat -> RngIntElt
The cardinality of L, i.e. the number of submodules of M.
L ! i: SubModLat, RngIntElt -> SubModLatElt
Create the i-th element of the lattice L. The number i is insignificant (i.e. the elements of L are not numbered in any special way), but this allows one to uniquely identify each element of the lattice L.
L ! S: SubModLat, ModRng -> SubModLatElt
Create the element of the lattice L corresponding to the submodule S of M.
Bottom(L): SubModLat -> SubModLatElt
Create the bottom of the lattice L, i.e. the element of L corresponding to the zero-submodule of M. If the lattice was created with a limit on the number of submodules and the lattice is partial, the bottom of the lattice may not be the zero submodule.
Random(L): SubModLat -> SubModLatElt
Create a random element of L.
Top(L): SubModLat -> SubModLatElt
Create the top of the lattice L, i.e. the element of L corresponding to M.
Operations on Lattice Elements

In the following, L is the lattice of submodules for a module M. Elements of L are identified with the integers [1..#L] but not in any particular order.

IntegerRing() ! e : RngInt, SubModLatElt -> RngIntElt
The integer corresponding to lattice element e.
e + f : SubModLatElt, SubModLatElt -> SubModLatElt
The sum of lattice elements e and f, i.e. the lattice element corresponding to the sum of the modules corresponding to e and f.
e meet f : SubModLatElt, SubModLatElt -> SubModLatElt
The intersection of lattice elements e and f.
e eq f : SubModLatElt, SubModLatElt -> SubModLatElt
Returns true if and only if lattice elements e and f are equal.
e subset f : SubModLatElt, SubModLatElt -> SubModLatElt
Returns true if and only if e is under f in the lattice L, i.e. the submodule corresponding to e is a submodule of the submodule corresponding to f.
MaximalSubmodules(e) : SubModLatElt -> { SubModLatElt }
The maximal submodules of e, returned as a set of lattice elements.
MinimalSupermodules(e) : SubModLatElt -> { SubModLatElt }
The minimal supermodules of e, returned as a set of lattice elements.
Module(e) : SubModLatElt -> ModRng
The submodule of M corresponding to the element e of the lattice L.
Properties of Lattice Elements
Dimension(e) : SubModLatElt -> RngIntElt
The dimension of the submodule of M corresponding to e.
JacobsonRadical(e) : SubModLatElt -> SubModLatElt
The Jacobson radical of e, i.e. the lattice element corresponding to the Jacobson radical of the submodule corresponding to e.
Morphism(e) : SubModLatElt -> ModMatRngElt
The morphism from the module corresponding to e to M.

Example ModAlg_LatticeOps (H97E24)

We create the lattice of submodules for the A-module GF(3)[Z6].
> SetSeed(1);
> M := PermutationModule(CyclicGroup(6), GF(3));
> L := SubmoduleLattice(M);
> #L;
16
> T := Top(L);
> B := Bottom(L);
> T;
16
> B;
1
> // Check that element of L corresponding to M is T
> L ! M;
1
> (L ! M) eq T;
true
> // Check that module corresponding to B is zero-submodule of M
> Module(B);
GModule of dimension 0 with base ring GF(3)

We next find the minimal supermodules (immediate parents) of B in L and then determine the actual A-submodules to which they correspond.

> S := MinimalSupermodules(B);
> S;
{ 2, 3 }
> Module(L ! 2);
GModule of dimension 1 with base ring GF(3)
> Module(L ! 3);
GModule of dimension 1 with base ring GF(3)
> Dimension(L ! 2);
1
> Morphism(L ! 2);
[1 1 1 1 1 1]
> Morphism(L ! 3);
[1 2 1 2 1 2]
> // Set A to the sum of these elements
> A := L!2 + L!3;
> A;
5;
> // Note that A has dimension 2 and its morphism is the sum of the previous
> Dimension(A);
2
> Morphism(A);
[1 0 1 0 1 0]
[0 1 0 1 0 1]
> MaximalSubmodules(A);
{ 2, 3}
> S!2 subset A;
true

We now find the maximal submodules of L, and examine one, S, in detail.

> MaximalSubmodules(T);
{ 14, 15 }
> A := L ! 14;
> Dimension(A);
5
> Morphism(A);
[1 0 0 0 0 1]
[0 1 0 0 0 2]
[0 0 1 0 0 1]
[0 0 0 1 0 2]
[0 0 0 0 1 1]
> S := Module(A);
> S;
GModule S of dimension 5 with base ring GF(3)

Finally, we compute the Jacobson radical of S directly, and also obtain it from the lattice, checking that the two methods match.

> J := JacobsonRadical(S);
> J;
GModule J of dimension 3 with base ring GF(3)
> L ! J;
8
> JacobsonRadical(A);
8
V2.28, 13 July 2023