- sign
- Signature
- SignaturedTenSpc
- Signatures
- SignDecomposition
- Signs
- Siksek
- SiksekBound
- Silverberg
- Silverman
- SilvermanBound
- SilvermanHeightBounds
- Sim
- sim
- simgps
- simgps-database
- simherm
- Similar
- IsSimilar(A, B) : AlgMatElt, AlgMatElt -> BoolElt, AlgMatElt
- IsSimilar(a, b) : AlgMatElt, AlgMatElt -> BoolElt, AlgMatElt
- IsSimilar(A, B) : LatNF, LatNF -> BoolElt, Mtrx, FldNumElt
- IsSimilar(M, N) : ModRng, ModRng -> BoolElt, Map
- IsSimilar(V, W) : ModTupFld, ModTupFld -> BoolElt, Map
- Similarity
- similarity
- SimilarityGroup
- SimNEQ
- Simple
- AlmostSimpleGroupDatabase() : -> DB
- AutomorphismGroupSimpleGroup(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> GrpPerm
- CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
- HasOnlySimpleSingularities(S) : Srfc -> BoolElt, List
- IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
- IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
- IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
- IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum
- IsEmptySimpleQuotientProcess(P) : Rec -> BoolElt
- IsSimple(A) : AlgGen -> BoolElt
- IsSimple(L) : AlgLie -> BoolElt
- IsSimple(F) : FldAlg -> BoolElt
- IsSimple(F) : FldNum -> BoolElt
- IsSimple(G) : GrpFin -> BoolElt
- IsSimple(G) : GrpGPC -> BoolElt
- IsSimple(G) : GrphMult -> BoolElt
- IsSimple(G) : GrpLie -> BoolElt
- IsSimple(G) : GrpMat -> BoolElt
- IsSimple(G) : GrpPC -> BoolElt
- IsSimple(G) : GrpPerm -> BoolElt
- IsSimple(D) : Inc -> BoolElt
- IsSimple(L) : LatNF -> BoolElt
- IsSimple(A) : ModAbVar -> BoolElt
- IsSimple(u: parameters) : GrpBrdElt -> BoolElt
- IsSimple(P) : TorPol -> BoolElt
- IsSimpleStarAlgebra(A) : AlgMat -> BoolElt
- IsSimpleSurfaceSingularity(p) : Pt -> BoolElt, MonStr, RngIntElt
- NameSimple(G) : GrpPerm -> <RngIntElt, RngIntElt, RngIntElt>
- NextSimpleQuotient(~P) : Rec ->
- NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
- NumberOfSimpleGroups() : -> RngIntElt
- PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
- RelativeRoots(R) : RootDtm -> SetIndx
- SimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
- SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
- SimpleEpimorphisms(P) : Rec -> SeqEnum, Tup
- SimpleExtension(F) : FldAlg -> FldAlg
- SimpleExtension(F) : FldNum -> FldNum
- SimpleGroup(N) : RngIntElt -> Grp
- SimpleGroupID(N) : -> Tup -> RngIntElt
- SimpleGroupIDToNumber(T) : Tup -> RngIntElt
- SimpleGroupName(G : parameters): GrpMat -> BoolElt, List
- SimpleGroupName(N) : RngIntElt -> MonStgElt
- SimpleGroupNameToNumber(S) : MonStgElt -> RngIntElt
- SimpleGroupOfLieType(X, n, k) : MonStgElt, RngIntElt, Rng -> GrpLie
- SimpleGroupOfLieType(X, n, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
- SimpleGroupOfOrder(M) : RngIntElt -> Grp
- SimpleHomologyDimensions(M) : ModAlg -> SeqEnum
- SimpleLattice(L) : LatNF -> LatNF
- SimpleOrders(W) : GrpMat -> [RngIntElt]
- SimpleParameters(A) : AlgMat -> SeqEnum
- SimpleQuotientAlgebras(A) : AlgMat -> Rec
- SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Rec
- SimpleQuotients(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> List
- SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
- SimpleReflectionMatrices(W) : GrpPermCox -> []
- SimpleReflectionMatrices(R) : RootDtm -> []
- SimpleReflectionMatrices(R) : RootSys -> []
- SimpleReflectionPermutations(W) : GrpMat -> []
- SimpleReflectionPermutations(W) : GrpPermCox -> [GrpPermElt]
- SimpleReflectionPermutations(R) : RootDtm -> []
- SimpleReflectionPermutations(R) : RootSys -> []
- SimpleReflections(W) : GrpFPCox -> [GrpFPCoxElt]
- SimpleRoots(G) : GrpLie -> Mtrx
- SimpleRoots(W) : GrpMat -> Mtrx
- SimpleRoots(W) : GrpPermCox -> Mtrx
- SimpleRoots(R) : RootStr -> Mtrx
- SimpleRoots(R) : RootSys -> Mtrx
- SimpleStarAlgebra(name, d, K) : MonStgElt, RngIntElt, FldFin -> AlgMat
- SimpleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
- SimpleSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- SumOfBettiNumbersOfSimpleModules(A, n) : AlgBas, RngIntElt -> RngIntElt
V2.28, 13 July 2023