- rank
- rank-kernel-solution
- rank2
- rank2-continued
- RankBound
- RankBounds
- RankDimension
- Ranks
- RanksOfPrimitiveIdempotents
- RankZ2
- rat-diff-field-create
- Rate
- rate
- ratgps
- ratgps1
- Rational
- AbsoluteRationalScroll(k,S) : Fld,[RngIntElt] -> TorVar
- AbsoluteRationalScroll(k,N) : Rng,SeqEnum -> PrjScrl
- BasisOfRationalFunctionField(X) : TorVar -> SeqEnum
- ClassifyRationalSurface(S) : Srfc -> Srfc, List, MonStgElt
- FunctionField(R) : Rng -> FldFunRat
- FunctionField(R, r) : Rng, RngIntElt -> FldFunRat
- HasRationalPoint(C) : CrvCon -> BoolElt, Pt
- HasRationalSolutions(L, g) : RngDiffOpElt, RngElt -> BoolElt, RngElt, SeqEnum
- IsRational(X) : Srfc -> BoolElt
- IsRationalCurve(S) : Sch -> BoolElt, CrvRat
- IsRationalCurve(X) : Sch -> BoolElt,CrvRat
- IsRationalFunctionField(F) : FldFunG -> BoolElt
- MinimalModelRationalSurface(S) : Srfc -> Map
- ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt
- NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
- ParametrizeOrdinaryCurve(C) : Crv -> MapSch
- Points(E) : CrvEll -> @ PtEll @
- Points(C) : CrvHyp -> SetIndx
- Points(C, x) : CrvHyp, RngElt -> SetIndx
- Points(J) : JacHyp -> SetIndx
- Points(J) : JacHyp -> SetIndx
- Points(J, a, d) : JacHyp, RngUPolElt, RngIntElt -> SetIndx
- Points(J, P) : JacHyp, SrfKumPt -> SetIndx
- Points(C : parameters) : CrvCon -> SetIndx
- Points(G) : SchGrpEll -> SetIndx
- PrimaryRationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
- PrimaryRationalForm(A) : Mtrx -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
- ProjectiveRationalFunction(f) : FldFunFracSchElt -> FldFunRatMElt
- RandomRationalSurface_d10g9(P) : Prj -> Srfc
- RationalCharacterTable(G) : Chtr -> SeqEnum
- RationalCharacterTable(G) : Grp -> SeqEnum, SeqEnum
- RationalCharacterTable(G): GrpFin -> SeqEnum
- RationalCurve(X, f) : Prj, RngMPolElt -> CrvRat
- RationalCuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
- RationalDecomposition(A) : ArtRep -> SeqEnum[Tup]
- RationalDifferentialField(C) : Fld -> RngDiff
- RationalExtensionRepresentation(F) : FldFunG -> FldFun
- RationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ RngUPolElt ]
- RationalForm(A) : Mtrx -> Mtrx, AlgMatElt, [ RngUPolElt ]
- RationalFunction(a) : FldFunGElt -> RngElt
- RationalHomology(A) : ModAbVar -> ModTupFld
- RationalMap(i, t) : Map, Map -> Map
- RationalMapping(M) : ModSym -> Map
- RationalMatrixGroupDatabase() : -> DB
- RationalPoint(C) : CrvCon -> Pt
- RationalPoints(f,q) : RngUPolElt, RngIntElt -> SetIndx
- RationalPoints(Z) : Sch -> SetEnum
- RationalPoints(X) : Sch -> SetIndx
- RationalPoints(K, Q) : SrfKum, [RngElt] -> SetIndx
- RationalPointsByFibration(X) : Sch -> SetIndx
- RationalPuiseux(p) : RngUPolElt -> Tup, SeqEnum, RngIntElt
- RationalReconstruction(e, f) : FldFunElt, RngUPolElt -> BoolElt, FldFunElt
- RationalReconstruction(s) : RngIntResElt -> BoolElt, FldRatElt
- RationalRuledSurface(P,n) : Prj, RngIntElt -> Srfc, MapSch
- RationalScroll(k,s,A) : Fld, RngIntElt, [RngIntElt] -> TorVar
- RationalSequence(p) : PathLS -> SeqEnum
- RationalSolutions(L) : RngDiffOpElt -> SeqEnum
- Rationals() : -> FldRat
- SetRationalBasis(M) : ModFrmHil ->
V2.28, 13 July 2023