- presented
- Preserving
- Pretty
- PrettyPrintInvariant
- Previous
- previous
- PreviousPrime
- PRI
- Primality
- primality
- PrimalityCertificate
- Primary
- IsPrimary(I) : RngMPol -> BoolElt
- IsPrimary(I) : RngMPolRes -> BoolElt
- Primary(a) : RngQuadElt -> RngQuadElt
- PrimaryAbelianBasis(A) : GrpAb -> [ GrpAbElt ], [ RngIntElt ]
- PrimaryAbelianBasis(G) : GrpFin -> [ GrpFinElt ], [ RngIntElt ]
- PrimaryAbelianBasis(G) : GrpMat -> [ GrpMatElt ], [ RngIntElt ]
- PrimaryAbelianBasis(G) : GrpPC -> [ GrpPCElt ], [ RngIntElt ]
- PrimaryAbelianBasis(G) : GrpPerm -> [ GrpPermElt ], [ RngIntElt ]
- PrimaryAbelianInvariants(A) : GrpAb -> [ RngIntElt ]
- PrimaryAbelianInvariants(G) : GrpFin -> [ RngIntElt ]
- PrimaryAbelianInvariants(G) : GrpMat -> [ RngIntElt ]
- PrimaryAbelianInvariants(G) : GrpPC -> [RngIntElt]
- PrimaryAbelianInvariants(G) : GrpPerm -> [ RngIntElt ]
- PrimaryAlgebra(R) : RngInvar -> RngMPol
- PrimaryComponents(X) : Sch -> SeqEnum
- PrimaryDecomposition(I) : RngMPol -> [ RngMPol ], [ RngMPol ]
- PrimaryDecomposition(I) : RngMPolRes -> [ RngMPolRes ], [ RngMPolRes ]
- PrimaryIdeal(R) : RngInvar -> RngMPol
- PrimaryInvariantFactors(a) : AlgMatElt -> [ <RngUPolElt, RngIntElt ]
- PrimaryInvariantFactors(A) : Mtrx -> [ <RngUPolElt, RngIntElt> ]
- R`PrimaryInvariants
- PrimaryInvariants(R) : RngInvar -> [ RngMPolElt ]
- PrimaryRationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
- PrimaryRationalForm(A) : Mtrx -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
- primary
- primary-decomposition
- PrimaryAbelianBasis
- PrimaryAbelianInvariants
- PrimaryAlgebra
- PrimaryComponents
- PrimaryDecomposition
- PrimaryIdeal
- PrimaryInvariantFactors
- PrimaryInvariants
- PrimaryRationalForm
- Prime
- BadPrimeData(L) : LSer -> SeqEnum
- ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
- ComputePrimeFactorisation(~D) : DivSchElt ->
- DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]
- IsFactorisationPrime(D) : DivSchElt -> BoolElt
- IsPrime(D) : DivSchElt -> BoolElt
- IsPrime(I) : OMIdl -> BoolElt
- IsPrime(I) : OMIdl -> BoolElt
- IsPrime(x) : RngElt -> BoolElt
- IsPrime(I) : RngFunOrdIdl -> BoolElt
- IsPrime(n) : RngIntElt -> BoolElt
- IsPrime(n) : RngIntElt -> BoolElt
- IsPrime(I) : RngMPol -> BoolElt
- IsPrime(I) : RngMPolRes -> BoolElt
- IsPrime(I) : RngOrdIdl -> BoolElt, RngOrdIdl
- IsPrimeField(F) : Fld -> BoolElt
- IsPrimePower(n) : RngIntElt -> BoolElt, RngIntElt, RngIntElt
- IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
- NegativePrimeDivisors(D) : DivSchElt -> SeqEnum
- NextPrime(n) : RngIntElt -> RngIntElt
- NthPrime(n) : RngIntElt -> RngIntElt
- NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
- PreviousPrime(n) : RngIntElt -> RngIntElt
- PrimalityCertificate(n) : RngIntElt -> List
- Prime(L) : FldXPad -> RngIntElt
- Prime(M) : ModSS -> RngIntElt
- Prime(L) : RngLocA -> RngElt
- Prime(L) : RngPad -> RngIntElt
- Prime(G) : SymGenLoc -> RngIntElt
- PrimeBasis(n) : RngIntElt -> [RngIntElt]
- PrimeBasis(n) : RngIntElt -> [RngIntElt]
- PrimeComponents(X) : Sch -> SeqEnum
- PrimeField(F) : Fld -> Fld
- PrimeField(F) : FldFin -> FldFin
- PrimeField(N) : Nfd -> FldFin
- PrimeForm(Q, p) : QuadBin, RngIntElt -> QuadBinElt
- PrimeIdeal(S, p) : AlgQuatOrd, RngElt -> AlgQuatOrdIdl
- PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]
- PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
- PrimeRing(F) : FldFun -> Rng
- PrimeRing(R) : Rng -> Rng
- PrimeRing(L) : RngPad -> RngPad
- RandomPrime(n: parameter) : RngIntElt -> RngIntElt
- RandomPrime(n: parameter) : RngIntElt -> RngIntElt
- RandomPrime(n, a, b, x: parameter) :RngIntElt, RngIntElt, RngIntElt -> BoolElt, RngIntElt
- RandomPrime(n, a, b, x: parameter) :RngIntElt, RngIntElt, RngIntElt -> BoolElt, RngIntElt
- RandomPrimePolynomial(R, d) : RngUPol, RngIntElt -> RngUPolElt
V2.28, 13 July 2023