- Introduction
- Free Groups and Words
- Construction of a Free Group
- Construction of Words
- Access Functions for Words
- Arithmetic Operators for Words
- Comparison of Words
- String Operations on Words
- Eliminate(u, x, v) : GrpFPElt, GrpFPElt, GrpFPElt -> GrpFPElt
- Eliminate(U, x, v) : { GrpFPElt }, GrpFPElt, GrpFPElt -> { GrpFPElt }
- Match(u, v, f) : GrpFPElt, GrpFPElt, RngIntElt -> BoolElt, RngIntElt
- RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
- Substitute(u, f, n, v) : GrpFPElt, RngIntElt, RngIntElt, GrpFPElt -> GrpFPElt
- Subword(u, f, n) : GrpFPElt, RngIntElt, RngIntElt -> GrpFPElt
- Example GrpFree_WordOps (H76E4)
- Finitely Generated Subgroups of Free Groups
- Supergroup(F) : GrpFP -> GrpFP
- x in H: GrpFP, GrpFPElt -> BoolElt
- IsSubgroup(H, K) : GrpFP, GrpFP -> BoolElt
- H eq K : GrpFP, GrpFP -> BoolElt
- Index(F, H) : GrpFP, GrpFP -> RngIntElt
- HasFiniteIndex(F, H) : GrpFP, GrpFP -> BoolElt
- FreeGenerators(H) : GrpFP -> SeqEnum, GrpFP
- H meet K : GrpFP, GrpFP -> GrpFP
- Centraliser(F,x) : GrpFP, GrpFPElt -> GrpFP
- IsConjugate(F, x, y) : GrpFP, GrpFPElt, GrpFPElt -> BoolElt, GrpFPElt
- Centraliser(F, H) : GrpFP, GrpFP -> GrpFP
- Normaliser(F, H) : GrpFP, GrpFP -> GrpFP
- IsConjugate(F, H, K) : GrpFP, GrpFP, GrpFP -> BoolElt, GrpFPElt
- Example GrpFree_free-subgroups (H76E5)
- The Automorphism Group of a Free Group
- Bibliography
V2.28, 13 July 2023