Ideals in OM Representation

Ideals of type RngOrdFracIdl can have an OM representation computed from them. Similarly ideals constructed from the Montes algorithm in OM representation can be converted into ideals of type RngOrdFracIdl.

Contents

Ideal(I) : OMIdl -> RngOrdIdl
Translates ideal I in OM representation into a magma representation.
OMRepresentation(I) : RngFunOrdIdl -> OMIdl
OMRepresentation(I) : RngOrdFracIdl -> OMIdl
Computes the OM representation of the ideal I in a number field.
OMRepresentation(L, S) : FldArith, [FldArithElt] -> OMIdl
OMRepresentation(L, a) : FldArith, FldArithElt -> OMIdl
OMRepresentation(L, a) : FldArith, RngElt -> OMIdl
Given a number field L and an element a or sequence S of elements in L, construct, in OM representation, the ideal generated by these elements.

Example RngOrd_om-rep-ideal (H39E38)

>      Ax<x> := PolynomialRing(Integers());
>      f := x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6;
>      L := NumberField(f);
>      p := 7;
>      Montes(L,p);
> Ideal(L`PrimeIdeals[p,1]);
Prime Ideal
Two element generators:
    [7, 0, 0, 0, 0]
    [6, 1, 0, 0, 0]
> OMRepresentation(L, [7, 1 + L.1 + L.1^2 + L.1^3 + L.1^4]);
OM ideal of the field Number Field with defining polynomial x^5 + 343*x^4 +
49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field
generated by [
7,
$.1^4 + $.1^3 + $.1^2 + $.1 + 1
]
> Ideal($1);
Ideal
Two element generators:
    [7, 0, 0, 0, 0]
    [1, 1, 1, 1, 1]

Ideal Arithmetic

I + J : OMIdl, OMIdl -> OMIdl
I * J : OMIdl, OMIdl -> OMIdl
I / J : OMIdl, OMIdl -> OMIdl
The sum, product or quotient of ideals I and J in OM representation.
I ^ n : OMIdl, RngIntElt -> OMIdl
The n-th power of the ideal I in OM representation.

Example RngOrd_om-ideal-arith (H39E39)

> Ax<x> := PolynomialRing(Integers());
> f := x^5 + 343*x^4 + 49*x^3 + 343*x^2 + 7*x + 6;
> L := NumberField(f);
> Montes(L,7);
> P := L`PrimeIdeals[7,1];
> I := OMRepresentation(L,[L.1]);
> I;
OM ideal of the field Number Field with defining polynomial x^5 + 343*x^4 +
49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field
generated by [
$.1
]
> J := P^-2;
> I*J;
> I^2;
OM ideal of the field Number Field with defining polynomial x^5 + 343*x^4 +
49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field
having the factorization [ <2, 1, 2>, <3, 1, 2> ]
> I/J;
OM ideal of the field Number Field with defining polynomial x^5 + 343*x^4 +
49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field
having the factorization [ <2, 1, 1>, <3, 1, 1>, <7, 1, 2> ]
> I+J;
OM ideal of the field Number Field with defining polynomial x^5 + 343*x^4 +
49*x^3 + 343*x^2 + 7*x + 6 over the Rational Field
having the factorization  []
generated by [
1,
0
]

Ideal Predicates

IsOne(I) : OMIdl -> BoolElt
Given an ideal I in OM representation returns whether the ideal is generated by the 1 element of the field.
IsZero(I) : OMIdl -> BoolElt
Given an ideal I in OM representation returns whether the ideal contains only the 0 element of the field.
I eq J : OMIdl, OMIdl -> BoolElt
Given two ideals I and J in OM representation returns whether these ideals are the same.
a in I : RngElt, OMIdl -> BoolElt
Given an element a coercible into the field containing the ideal I in OM representation return whether a is contained in the ideal.
I subset J : OMIdl, OMIdl -> BoolElt
Given two ideals I and J in OM representation returns whether I is contained in J.
IsPrime(I) : OMIdl -> BoolElt
Given an ideal I in OM representation returns whether only the 1 ideal and I contain I.
IsIntegral(I) : OMIdl -> BoolElt
Given an ideal I in OM representation returns whether all elements in the ideal I are integral.
V2.28, 13 July 2023