- positive
- positive-simple-roots
- PositiveConjugates
- PositiveConjugatesProcess
- PositiveCoroots
- PositiveDefiniteForm
- PositiveGammaOrbitsOnRoots
- PositiveQuadrant
- PositiveRelativeRoots
- PositiveRoots
- PositiveRootsPerm
- PositiveSum
- Possible
- PossibleCanonicalDissidentPoints
- PossibleHypergeometricData
- PossibleSimpleCanonicalDissidentPoints
- POT
- POTPERM
- pow
- Power
- AlgebraicPowerSeries(dp, ip, L, e) : RngUPolElt, RngMPolElt, Lat, RngIntElt -> RngPowAlgElt
- AlternatingPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
- CartesianPower(R, k) : Str, RngIntElt -> SetCart
- ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
- ConjugatesToPowerSums(I) : [] -> []
- DecomposeExteriorPower(R, n, w) : RootDtm, RngIntElt, [ ] -> [ ModTupRngElt ], [ RngIntElt ]
- DecomposeSymmetricPower(R, n, w) : RootDtm, RngIntElt, [ ] -> [ ModTupRngElt ], [ RngIntElt ]
- Eigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
- ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
- EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
- EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
- ExteriorPower(a,r) : AlgMat, RngIntElt -> AlgMatElt
- ExteriorPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
- ExteriorPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
- HasHomogeneousBasis(A): AlgSym -> BoolElt
- HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
- IsPower(a, n) : FldACElt, RngIntElt -> BoolElt, FldACElt
- IsPower(a, k) : FldAlgElt, RngIntElt -> BoolElt, FldAlgElt
- IsPower(a, n) : FldFinElt, RngIntElt -> BoolElt, FldFinElt
- IsPower(a, k) : FldNumElt, RngIntElt -> BoolElt, FldNumElt
- IsPower(I, n) : RngFunOrdIdl, RngIntElt -> BoolElt, RngFunOrdIdl
- IsPower(n) : RngIntElt -> BoolElt
- IsPower(n, k) : RngIntElt, RngIntElt -> BoolElt
- IsPower(w, n) : RngOrdElt, RngIntElt -> BoolElt, RngOrdElt
- IsPower(I, k) : RngOrdFracIdl, RngIntElt -> BoolElt, RngOrdFracIdl
- IsPower(x, n) : RngPadElt, RngIntElt -> BoolElt, RngPadElt
- IsPrimePower(n) : RngIntElt -> BoolElt, RngIntElt, RngIntElt
- LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
- ModByPowerOf2(n, b) : RngIntElt, RngIntElt -> RngIntElt
- MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
- PowerFormalSet(R) : Str -> PowSetIndx
- PowerGroup(G) : GrpPC -> PowerGroup
- PowerIdeal(R) : Rng -> PowIdl
- PowerIndexedSet(R) : Str -> PowSetIndx
- PowerMap(R) : AlgChtr -> Map
- PowerMap(G) : GrpFin -> Map
- PowerMap(G) : GrpMat -> Map
- PowerMap(G) : GrpPC -> Map
- PowerMap(G) : GrpPerm -> Map
- PowerMultiset(R) : Str -> PowSetMulti
- PowerPolynomial(f,n) : RngUPolElt, RngIntElt -> RngUPolElt
- PowerProduct(B, E) : [RngOrdFracIdl], [RngIntElt] -> RngOrdFracIdl
- PowerRelation(x,n) : FldPadElt, RngIntElt -> RngUPolElt
- PowerRelation(r, k: parameters) : FldReElt, RngIntElt -> RngUPolElt
- PowerResidueCode(K, n, p) : FldFin, RngIntElt, RngIntElt -> Code
- PowerSequence(R) : Str -> PowSeqEnum
- PowerSeriesRing(R) : Rng -> RngSerPow
- PowerSet(R) : Str -> PowSetEnum
- PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
- PowerSumToElementarySymmetric(I) : [] -> []
- PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
- PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
- PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt
- PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
- ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
- ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
- ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt
- SchurToPowerSumMatrix(n): RngIntElt -> AlgMatElt
- SetPowerPrinting(F, l) : FldFin, BoolElt ->
- SymmetricFunctionAlgebraPower(R) : Rng -> AlgSym
- SymmetricPower(a,r) : AlgMatElt, RngIntElt -> AlgMatElt
- SymmetricPower(HS, m) : HodgeStruc, RngIntElt -> HodgeStruc
- SymmetricPower(L, m) : LSer, RngIntElt -> LSer
- SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
- SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
- SymmetricPower(L, m) : RngDiffOpElt, RngIntElt -> RngDiffOpElt
- SymmetricPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
- TensorPower(M, n) : ModMat, RngIntElt -> ModMat
- TensorPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
- TensorProduct(S, T) : ShfCoh, ShfCoh -> ShfCoh
- TwoPowerIsogenies(J) : JacHyp -> SeqEnum, SeqEnum, SeqEnum
- TwoPowerIsogenyDescentRankBound(E, T : parameters) : CrvEll[FldRat], PtEll[FldRat] ) -> RngIntElt, SeqEnum, SeqEnum
- f ^ n : QuadBinElt, RngIntElt -> QuadBinElt
- qExpansion(f) : ModFrmElt -> RngSerPowElt
V2.28, 13 July 2023