About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (n)
Search
NPCGenerators
Ngens(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(G) : GrpGPC -> RngIntElt
NPCgens(G) : GrpGPC -> RngIntElt
NPCGenerators(G) : GrpGPC -> RngIntElt
NumberOfGenerators(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
NPCgens
Ngens(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(G) : GrpGPC -> RngIntElt
NPCgens(G) : GrpGPC -> RngIntElt
NPCGenerators(G) : GrpGPC -> RngIntElt
NumberOfGenerators(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
Nqubits
Nqubits(H) : HilbSpc -> RngIntElt
NumberOfQubits(H) : HilbSpc -> RngIntElt
Nrels
Nrels(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(G) : GrpRWS -> RngIntElt
NumberOfRelations(M) : MonRWS -> RngIntElt
Nresults
Nresults() : -> RngIntElt, [ BoolElt ]
NumberOfResults() : -> RngIntElt, [ BoolElt ]
Func_Nresults (Example H2E11)
Nrows
Nrows(phi) : MapModAbVar -> RngIntElt
NumberOfRows(a) : AlgMatElt -> RngIntElt
NumberOfRows(u) : ModTupFldElt -> RngIntElt
NumberOfRows(A) : Mtrx -> RngIntElt
NumberOfRows(A) : MtrxSprs -> RngIntElt
Nsgens
Nsgens(G) : GrpMat -> RngIntElt
NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt
ntbg
BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
Number Theoretic Bit Generators (PSEUDO-RANDOM BIT SEQUENCES)
Nth
NthPrime(n) : RngIntElt -> RngIntElt
NthPrime
NthPrime(n) : RngIntElt -> RngIntElt
Nthreads
GetNthreads() : -> RngIntElt
SetNthreads(n) : RngIntElt ->
SetNthreads(n) : RngIntElt ->
nTorsionSubgroup
nTorsionSubgroup(A, n) : ModAbVar, RngIntElt -> ModAbVarSubGrp
nTorsionSubgroup(G, n) : ModAbVarSubGrp, RngIntElt -> ModAbVarSubGrp
Nuclear
NuclearRank(G) : GrpPC -> RngIntElt
NuclearRank
NuclearRank(G) : GrpPC -> RngIntElt
Nucleus
RightNucleus(A) : Alg -> AlgMat
MidNucleus(A) : Alg -> AlgMat
LeftNucleus(A) : Alg -> AlgMat
LeftNucleus(B : parameters) : TenSpcElt -> AlgMat
MidNucleus(B) : TenSpcElt -> AlgMat
Nucleus(T, a, b) : TenSpcElt, RngIntElt, RngIntElt -> AlgMat
RightNucleus(B) : TenSpcElt -> AlgMat
Null
IsNull(G) : Grph -> BoolElt
IsNull(G) : GrphMult -> BoolElt
IsNull(S) : SeqEnum -> BoolElt
IsNull(R) : SetEnum -> BoolElt
IsNullHomotopy(f,H) : MapChn, MapChn -> BoolElt
JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
Kernel(a) : AlgMatElt -> ModTup
Kernel(a) : ModMatRngElt -> ModTupFld, Map
Kernel(a) : ModMatRngElt -> ModTupRng
NullGraph( : parameters) : -> GrphUnd
NullHomotopy(f) : MapChn -> MapChn
NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
RowNullSpace(a) : AlgMatElt -> ModTup
NullGraph
NullGraph( : parameters) : -> GrphUnd
NullHomotopy
NullHomotopy(f) : MapChn -> MapChn
Nullhomotopy
AlgBas_Nullhomotopy (Example H92E26)
Nullity
Nullity(phi) : MapModAbVar -> RngIntElt
NullSpace
NullSpace(a) : AlgMatElt -> ModTup
Kernel(a) : AlgMatElt -> ModTup
Kernel(a) : ModMatRngElt -> ModTupFld, Map
Kernel(a) : ModMatRngElt -> ModTupRng
Nullspace
Nullspace(X) : AlgMatLieElt -> ModTupRng
Kernel(X) : AlgMatLieElt -> ModTupRng
Nullspace(A) : Mtrx -> ModTupRng
Nullspace(A) : MtrxSprs -> ModTupRng
NullspaceMatrix(A) : Mtrx -> ModTupRng
NullspaceMatrix(A) : MtrxSprs -> Mtrx
NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
NullspaceOfTranspose(A) : Mtrx -> ModTupRng
NullspaceOfTranspose(A) : MtrxSprs -> ModTupRng
RowNullSpace(a) : AlgMatElt -> ModTup
Mat_Nullspace (Example H27E7)
NullspaceMatrix
KernelMatrix(A) : Mtrx -> ModTupRng
NullspaceMatrix(A) : Mtrx -> ModTupRng
NullspaceMatrix(A) : MtrxSprs -> Mtrx
NullspaceOfTranspose
RowNullSpace(X) : AlgMatLieElt -> ModTupRng
NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
NullspaceOfTranspose(A) : Mtrx -> ModTupRng
NullspaceOfTranspose(A) : MtrxSprs -> ModTupRng
RowNullSpace(a) : AlgMatElt -> ModTup
Num
NumExtraspecialPairs(R) : RootDtm -> SeqEnum
NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
NumberOfPositiveRoots(N) : MonStgElt -> .
NumberOfPositiveRoots(R) : RootStr -> RngIntElt
NumberOfPositiveRoots(R) : RootSys -> RngIntElt
Contents
Index (n)
Search
V2.28, 13 July 2023