About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
Is_Isomorphic_Hyperelliptic_Curves
CrvHyp_Is_Isomorphic_Hyperelliptic_Curves (Example H134E50)
ISA
ISA(T, U) : Cat, Cat -> BoolElt
ISABase
ISABaseField(F,G) : Fld, Fld -> BoolElt
ISABaseField
ISABaseField(F,G) : Fld, Fld -> BoolElt
IsAbelian
IsAbelian(L) : AlgLie -> BoolElt
IsAbelian(A) : FldAb -> BoolElt
IsAbelian(F) : FldAlg -> BoolElt
IsAbelian(F) : FldNum -> BoolElt
IsAbelian(K, k) : FldPad, FldPad -> BoolElt
IsAbelian(G) : GrpFin -> BoolElt
IsAbelian(G) : GrpGPC -> BoolElt
IsAbelian(G) : GrpLie -> BoolElt
IsAbelian(G) : GrpMat -> BoolElt
IsAbelian(G) : GrpPC -> BoolElt
IsAbelian(G) : GrpPerm -> BoolElt
IsAbelianByFinite
IsAbelianByFinite(G : parameters) : GrpMat -> BoolElt
IsAbelianVariety
IsAbelianVariety(A) : ModAbVar -> BoolElt
IsAbsoluteField
IsAbsoluteField(K) : FldAlg -> BoolElt
IsAbsoluteField(K) : FldNum -> BoolElt
IsAbsolutelyIrreducible
IsAbsolutelyIrreducible(C) : Crv -> BoolElt
IsAbsolutelyIrreducible(G) : GrpMat -> BoolElt
IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
IsAbsolutelyIrreducible(R) : RootStr -> BoolElt
IsAbsoluteOrder
IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
IsAbsoluteOrder(O) : RngOrd -> BoolElt
IsAdditiveOrder
IsAdditiveOrder(R, Q) : RootStr, [RngIntElt] -> BoolElt
IsAdditiveOrder(R, Q) : RootSys, [RngIntElt] -> BoolElt
IsAdditiveProjective
IsAdditiveProjective(C) : CodeAdd -> BoolElt
IsAdjoint
IsAdjoint(G) : GrpLie -> BoolElt
IsAdjoint(R) : RootDtm -> BoolElt
IsAffine
IsAffine(W) : GrpFPCox -> BoolElt
IsAffine(G) : GrpPerm -> BoolElt, GrpPerm
IsAffine(X) : Sch -> BoolElt
IsAffine(X) : Sch -> BoolElt
IsAffineLinear
IsAffineLinear(f) : MapSch -> BoolElt
IsAffineLinear(P) : TorPol -> BoolElt
IsAlgebraHomomorphism
IsAlgebraHomomorphism(A, B, psi) : AlgBas, AlgBas, Map -> Bool
IsAlgebraHomomorphism(A, B, psi) : AlgBas, AlgBas, Mtrx -> Bool
IsAlgebraHomomorphism(psi): Map -> Bool
IsAlgebraic
IsAlgebraic(h) : GrpLieAutoElt -> BoolElt
IsAlgebraicallyDependent
IsAlgebraicallyDependent(S) : RngMPolElt -> BoolElt
IsAlgebraicallyIsomorphic
IsAlgebraicallyIsomorphic(G, H) : GrpLie, GrpLie -> BoolElt, Map
IsAlgebraicDifferentialField
IsAlgebraicDifferentialField(R) : Rng -> BoolElt
IsAlgebraicField
IsAlgebraicField(R) : Any -> BoolElt
IsAlgebraicGeometric
IsAlgebraicGeometric(C) : Code -> BoolElt
IsAlternating
IsAlternating(G) : GrpPerm -> BoolElt
IsAlternating(T) : TenSpc -> BoolElt
IsAlternating(T) : TenSpcElt -> BoolElt
IsAltsym
IsAltsym(G : parameters) : GrpPerm -> BoolElt
IsAmbient
IsAmbient(M) : ModBrdt -> BoolElt
IsAmbient(M) : ModMPol -> BoolElt
IsAmbient(X) : Sch -> BoolElt
IsAmbientSpace
IsAmbientSpace(M) : ModFrm -> BoolElt
IsAmbientSpace(M) : ModSS -> BoolElt
IsAmple
IsAmple(D) : DivTorElt -> BoolElt
IsAnalyticallyIrreducible
IsAnalyticallyIrreducible(p) : Pt -> BoolElt
IsAnisotropic
IsAnisotropic(R) : RootDtm -> BoolElt
IsAnticanonical
IsAnticanonical(D) : DivSchElt -> BoolElt
IsAntisymmetric
IsAntisymmetric(T) : TenSpc -> BoolElt
IsAntisymmetric(T) : TenSpcElt -> BoolElt
IsArc
IsArc(P, A) : Plane, { PlanePt } -> BoolElt
IsArithmeticallyCohenMacaulay
IsArithmeticallyCohenMacaulay(S) : ShfCoh -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
IsArithmeticallyGorenstein
IsGorenstein(X) : Sch -> BoolElt
IsArithmeticallyCohenMacaulay(X) : Sch -> BoolElt
IsArithmeticallyGorenstein(X) : Sch -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
IsAssociative
IsAssociative(A) : AlgGen -> BoolElt
IsAttachedToModularSymbols
IsAttachedToModularSymbols(A) : ModAbVar -> BoolElt
IsAttachedToModularSymbols(H) : ModAbVarHomol -> BoolElt
IsAttachedToNewform
IsAttachedToNewform(A) : ModAbVar -> BoolElt, ModAbVar, MapModAbVar
IsAutomaticGroup
IsAutomaticGroup(F: parameters) : GrpFP -> BoolElt, GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
IsAutomorphism
IsAutomorphism(f) : MapSch -> BoolElt,AutSch
IsBalanced
IsBalanced(D, t: parameters) : Inc, RngIntElt -> BoolElt, RngIntElt
IsBasePointFree
IsBasePointFree(D) : DivSchElt -> BoolElt
IsMobile(D) : DivSchElt -> BoolElt
BaseLocus(D) : DivSchElt -> Sch
IsBasePointFree(L) : LinearSys -> BoolElt
Contents
Index (i)
Search
V2.28, 13 July 2023