About
Calculator
Ordering
FAQ
Download
Download Magma
Databases
User Contributions
Documentation
Handbook
Overview
Release Notes
Discovering Maths with Magma
First Steps in Magma (pdf)
Solving Problems with Magma (pdf)
Acknowledgements
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
Is_Isomorphic_Hyperelliptic_Curves
CrvHyp_Is_Isomorphic_Hyperelliptic_Curves (Example H134E50)
ISA
ISA(T, U) : Cat, Cat -> BoolElt
ISABase
ISABaseField(F,G) : Fld, Fld -> BoolElt
ISABaseField
ISABaseField(F,G) : Fld, Fld -> BoolElt
IsAbelian
IsAbelian(L) : AlgLie -> BoolElt
IsAbelian(A) : FldAb -> BoolElt
IsAbelian(F) : FldAlg -> BoolElt
IsAbelian(F) : FldNum -> BoolElt
IsAbelian(K, k) : FldPad, FldPad -> BoolElt
IsAbelian(G) : GrpFin -> BoolElt
IsAbelian(G) : GrpGPC -> BoolElt
IsAbelian(G) : GrpLie -> BoolElt
IsAbelian(G) : GrpMat -> BoolElt
IsAbelian(G) : GrpPC -> BoolElt
IsAbelian(G) : GrpPerm -> BoolElt
IsAbelianByFinite
IsAbelianByFinite(G : parameters) : GrpMat -> BoolElt
IsAbelianVariety
IsAbelianVariety(A) : ModAbVar -> BoolElt
IsAbsoluteField
IsAbsoluteField(K) : FldAlg -> BoolElt
IsAbsoluteField(K) : FldNum -> BoolElt
IsAbsolutelyIrreducible
IsAbsolutelyIrreducible(C) : Crv -> BoolElt
IsAbsolutelyIrreducible(G) : GrpMat -> BoolElt
IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
IsAbsolutelyIrreducible(R) : RootStr -> BoolElt
IsAbsoluteOrder
IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
IsAbsoluteOrder(O) : RngOrd -> BoolElt
IsAbstractFrobeniusGroup
IsAbstractFrobeniusGroup(G) : GrpFin -> BoolElt, Grp, Grp
IsAdditiveOrder
IsAdditiveOrder(R, Q) : RootStr, [RngIntElt] -> BoolElt
IsAdditiveOrder(R, Q) : RootSys, [RngIntElt] -> BoolElt
IsAdditiveProjective
IsAdditiveProjective(C) : CodeAdd -> BoolElt
IsAdjoint
IsAdjoint(G) : GrpLie -> BoolElt
IsAdjoint(R) : RootDtm -> BoolElt
IsAffine
IsAffine(W) : GrpFPCox -> BoolElt
IsAffine(G) : GrpPerm -> BoolElt, GrpPerm
IsAffine(X) : Sch -> BoolElt
IsAffine(X) : Sch -> BoolElt
IsAffineLinear
IsAffineLinear(f) : MapSch -> BoolElt
IsAffineLinear(P) : TorPol -> BoolElt
IsAlgebraHomomorphism
IsAlgebraHomomorphism(A, B, psi) : AlgBas, AlgBas, Map -> Bool
IsAlgebraHomomorphism(A, B, psi) : AlgBas, AlgBas, Mtrx -> Bool
IsAlgebraHomomorphism(psi): Map -> Bool
IsAlgebraic
IsAlgebraic(h) : GrpLieAutoElt -> BoolElt
IsAlgebraicallyDependent
IsAlgebraicallyDependent(S) : RngMPolElt -> BoolElt
IsAlgebraicallyIsomorphic
IsAlgebraicallyIsomorphic(G, H) : GrpLie, GrpLie -> BoolElt, Map
IsAlgebraicDifferentialField
IsAlgebraicDifferentialField(R) : Rng -> BoolElt
IsAlgebraicField
IsAlgebraicField(R) : Any -> BoolElt
IsAlgebraicGeometric
IsAlgebraicGeometric(C) : Code -> BoolElt
IsAlternating
IsAlternating(G) : GrpPerm -> BoolElt
IsAlternating(T) : TenSpc -> BoolElt
IsAlternating(T) : TenSpcElt -> BoolElt
IsAltsym
IsAltsym(G : parameters) : GrpPerm -> BoolElt
IsAmbient
IsAmbient(M) : ModBrdt -> BoolElt
IsAmbient(M) : ModMPol -> BoolElt
IsAmbient(X) : Sch -> BoolElt
IsAmbientSpace
IsAmbientSpace(M) : ModFrm -> BoolElt
IsAmbientSpace(M) : ModSS -> BoolElt
IsAmple
IsAmple(D) : DivTorElt -> BoolElt
IsAnalyticallyIrreducible
IsAnalyticallyIrreducible(p) : Pt -> BoolElt
IsAnisotropic
IsAnisotropic(R) : RootDtm -> BoolElt
IsAnticanonical
IsAnticanonical(D) : DivSchElt -> BoolElt
IsAntisymmetric
IsAntisymmetric(T) : TenSpc -> BoolElt
IsAntisymmetric(T) : TenSpcElt -> BoolElt
IsArc
IsArc(P, A) : Plane, { PlanePt } -> BoolElt
IsArithmeticallyCohenMacaulay
IsArithmeticallyCohenMacaulay(S) : ShfCoh -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
IsArithmeticallyGorenstein
IsGorenstein(X) : Sch -> BoolElt
IsArithmeticallyCohenMacaulay(X) : Sch -> BoolElt
IsArithmeticallyGorenstein(X) : Sch -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
IsAssociative
IsAssociative(A) : AlgGen -> BoolElt
IsAttachedToModularSymbols
IsAttachedToModularSymbols(A) : ModAbVar -> BoolElt
IsAttachedToModularSymbols(H) : ModAbVarHomol -> BoolElt
IsAttachedToNewform
IsAttachedToNewform(A) : ModAbVar -> BoolElt, ModAbVar, MapModAbVar
IsAutomaticGroup
IsAutomaticGroup(F: parameters) : GrpFP -> BoolElt, GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
IsAutomorphism
IsAutomorphism(f) : MapSch -> BoolElt,AutSch
IsBalanced
IsBalanced(D, t: parameters) : Inc, RngIntElt -> BoolElt, RngIntElt
IsBasePointFree
IsBasePointFree(D) : DivSchElt -> BoolElt
IsMobile(D) : DivSchElt -> BoolElt
BaseLocus(D) : DivSchElt -> Sch
IsBasePointFree(L) : LinearSys -> BoolElt
Contents
Index (i)
Search
V2.28, 28 February 2025