Arithmetic

The standard arithmetic operations + and - and left scalar multiplication are defined for elements of supersingular modules. Also one can add and intersect two submodules of an ambient supersingular module.

P + Q : ModSSElt, ModSSElt -> ModSSElt
P - Q : ModSSElt, ModSSElt -> ModSSElt
a * P : RngElt, ModSSElt -> ModSSElt
M1 + M2 : ModSS, ModSS -> ModSS
The submodule generated by all sums of elements in the supersingular modules M1 and M2.
M1 meet M2 : ModSS, ModSS -> ModSS
The intersection of the supersingular modules M1 and M2.

Example ModSS_Arithmetic (H144E7)

First we illustrate some arithmetic on elements.
> M := SupersingularModule(11);
> P := M.1; P;
(1, 1)
> Q := M.2; Q;
(0, 0)
> P + Q;
(1, 1) + (0, 0)
> P - Q;
(1, 1) - (0, 0)
> 3*P;
3*(1, 1)
Next we illustrate some arithmetic on submodules.
> E := EisensteinSubspace(M);
> S := CuspidalSubspace(M);
> V := E + S;
> V;
Supersingular module associated to X_0(1)/GF(11) of dimension 2
> Basis(V);
[
    (1, 1) + 4*(0, 0),
    5*(0, 0)
]
The index of E + S in M is of interest since it is related to congruences between Eisenstein series and cusp forms. Upon converting each of E and S to an RSpace, we find that the index is 5.
> RSpace(M)/RSpace(V);
Full Quotient RSpace of degree 1 over Integer Ring
Column moduli:
[ 5 ]
The intersection of E and S is the zero module.
> W := E meet S; W;
Supersingular module associated to X_0(1)/GF(11) of dimension 0
> Basis(W);
[]
V2.28, 13 July 2023