- CentralizerGLZ
- CentralizerOfNormalSubgroup
- Centralizing
- CentralOrder
- CentralValue
- Centre
- Centred
- CentredAffinePatch
- CentreDensity
- CentreOfEndomorphismAlgebra
- CentreOfEndomorphismRing
- CentrePolynomials
- Centroid
- CentroidUnipotent
- Certificate
- cfe
- CFENew
- cfgrowth
- cflater
- CFP
- CFP(u: parameters) : GrpBrdElt -> Tup
- CanonicalFactorRepresentation(u: parameters) : GrpBrdElt -> Tup
- GetForceCFP(B) : GrpBrd -> BoolElt
- Random(B, r, s, m, n: parameters) : GrpBrd, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> GrpBrdElt
- SetForceCFP(~B, b) : GrpBrd, BoolElt ->
- cfp
- CGraph
- CGroup
- cgroups
- cgrouptocosetgeometry
- Chabauds
- Chabauty
- Chabauty(MWmap, Ecov) : Map, MapSch -> SetEnum, RngIntElt
- Chabauty(MWmap, Ecov, p) : Map, MapSch, RngIntElt -> RngIntElt, SetEnum, RngIntElt, Tup
- Chabauty(P, p: Precision) : JacHypPt, RngIntElt -> SetIndx
- Chabauty(P : ptC) : JacHypPt -> SetIndx
- chabauty
- chabauty-method
- chabauty-method1
- chabauty-method2
- chabauty-method3
- chabauty-method4
- Chabauty0
- Chain
- AllCompactChainMaps(PR) : Rec -> Rec
- BasicStabilizerChain(G) : GrpMat -> [GrpMat]
- BasicStabilizerChain(G) : GrpPerm -> [GrpPerm]
- ChainComplex(X, A) : SmpCpx, Rng -> ModCpx
- ChainMap(Q, C, D, n) : SeqEnum, ModCpx, ModCpx, RngIntElt -> MapChn
- CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
- CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
- CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
- CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
- Homology(C) : ModCpx -> SeqEnum
- IsChainMap(L, C, D, n) : List, ModCpx, ModCpx, RngIntElt -> BoolElt
- IsChainMap(f) : MapChn -> BoolElt
- IsProperChainMap(f) : MapChn -> BoolElt
- RestrictionChainMap(P1,P2) : Rec, Rec -> MapChn
- Z4CodeFromBinaryChain(C1, C2) : Code, Code -> Code
- ZeroChainMap(C, D) : ModCpx, ModCpx -> MapChn
V2.28, 13 July 2023