About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (c)
Search
CompositionReversion
RngSer_CompositionReversion (Example H50E2)
CompositionSeries
CompositionSeries(G) : GrpAb -> [GrpAb]
ChiefSeries(G) : GrpAb -> [GrpAb]
CompositionSeries(A) : AlgGen -> [ AlgGen ], [ AlgGen ], AlgMatElt
CompositionSeries(L) : AlgLie -> [ Alg ], [ AlgLie ], AlgMatElt
CompositionSeries(G) : GrpPC -> [GrpPC]
CompositionSeries(G, i) : GrpPC, RngIntElt -> [GrpPC]
CompositionSeries(G) : GrpPerm -> [ GrpPerm ]
CompositionSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
CompositionTree
CompositionTree(G) : GrpMat[FldFin] -> []
CompositionTree(G : parameters) : GrpMat[FldFin] -> []
GrpMatFF_CompositionTree (Example H66E14)
CompositionTreeCBM
CompositionTreeCBM(G) : GrpMat[FldFin -> GrpMatElt
CompositionTreeElementToWord
CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
CompositionTreeFactoredOrder
CompositionTreeFactoredOrder(G) : Grp -> RngIntEltFact
CompositionTreeOrder(G) : Grp -> RngIntElt
CompositionTreeFactorNumber
CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
CompositionTreeFastVerification
CompositionTreeFastVerification(G) : Grp -> BoolElt
CompositionTreeNiceGroup
CompositionTreeNiceGroup(G) : Grp -> GrpMat[FldFin]
CompositionTreeNiceToUser
CompositionTreeNiceToUser(G) : Grp -> Map, []
CompositionTreeNonAbelianFactors
CompositionTreeNonAbelianFactors(G) : Grp -> RngIntElt
CompositionTreeNonAbelianFactors(G) : GrpMat[FldFin] -> List
CompositionTreeOrder
CompositionTreeOrder(G) : Grp -> RngIntElt
CompositionTreeOrder(G) : Grp -> RngIntElt
CompositionTreeReductionInfo
CompositionTreeReductionInfo(G, t) : Grp, RngIntElt -> MonStgElt,Grp, Grp
CompositionTreeSeries
CompositionTreeSeries(G) : Grp -> SeqEnum, List, List, List, BoolElt, []
CompositionTreeSLPGroup
CompositionTreeSLPGroup(G) : Grp -> GrpSLP, Map
CompositionTreeVerify
CompositionTreeVerify(G) : Grp -> BoolElt, []
GrpMatFF_CompositionTreeVerify (Example H66E15)
Compositum
Compositum(K, A) : FldAlg, FldAb -> FldAlg
Compositum(K, L) : FldAlg, FldAlg -> FldAlg
Compositum(K, L) : FldNum, FldNum -> FldNum
FldNum_Compositum (Example H36E6)
RngOrd_Compositum (Example H39E8)
Compress
Compress(T) : TenSpcElt -> TenSpcElt
CompressAssocForm
Multilinear_CompressAssocForm (Example H62E23)
CompSeries
ModAlg_CompSeries (Example H97E18)
CompTree1
GrpMatFF_CompTree1 (Example H66E17)
CompTree2
GrpMatFF_CompTree2 (Example H66E18)
CompTreeJ4
GrpMatFF_CompTreeJ4 (Example H66E16)
Computable
HasComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
HasComputableLCS(G) : GrpGPC -> BoolElt
HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
IsDualComputable(A) : ModAbVar -> BoolElt, ModAbVar
computation
Homology Computation (SIMPLICIAL HOMOLOGY)
computations
Simplifying Automorphism Group Computations (MULTILINEAR ALGEBRA)
Compute
PrimeFactorisation(D) : DivSchElt -> SeqEnum
ComputePrimeFactorisation(~D) : DivSchElt ->
ComputeReducedFactorisation(~D) : DivSchElt ->
ComputePrimeFactorisation
PrimeFactorisation(D) : DivSchElt -> SeqEnum
ComputePrimeFactorisation(~D) : DivSchElt ->
ComputeReducedFactorisation
ReducedFactorisation(D) : DivSchElt -> SeqEnum
ComputeReducedFactorisation(~D) : DivSchElt ->
computing
Computing L-values (L-FUNCTIONS)
Comultiplication
Comultiplication(U, d) : AlgQUE, RngIntElt -> UserProgram
Concatenated
ConcatenatedCode(O, I) : Code, Code -> Code
ConcatenatedCode
ConcatenatedCode(O, I) : Code, Code -> Code
CodeFld_ConcatenatedCode (Example H161E33)
concrete
Concrete Representations (FINITELY PRESENTED GROUPS)
concrete-small
Concrete Representations (FINITELY PRESENTED GROUPS)
Concurrent
IsConcurrent(P, R) : Plane, { PlaneLn } -> BoolElt, PlanePt
Condensation
CondensationMatrices(A) : AlgMat -> Tup
CondensationMatrices
CondensationMatrices(A) : AlgMat -> Tup
Condensed
CondensedAlgebra(A) : AlgMat -> AlgMat
CondensedAlgebra
CondensedAlgebra(A) : AlgMat -> AlgMat
AlgMat_CondensedAlgebra (Example H90E11)
Conditional
ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
conditional
Classes of Subgroups Satisfying a Condition (PERMUTATION GROUPS)
Conditional Statements and Expressions (STATEMENTS AND EXPRESSIONS)
The Simple Conditional Expression (STATEMENTS AND EXPRESSIONS)
The Simple Conditional Statement (STATEMENTS AND EXPRESSIONS)
conditional-expression
The Simple Conditional Expression (STATEMENTS AND EXPRESSIONS)
conditional-statement
The Simple Conditional Statement (STATEMENTS AND EXPRESSIONS)
ConditionalClassGroup
ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
Conditioned
ConditionedGroup(G) : GrpPC -> GrpPC
IsConditioned(G) : GrpPC -> BoolElt
conditioned
WeightClass(x) : GrpPCElt -> RngIntElt
Conditioned Presentations (FINITE SOLUBLE GROUPS)
conditioned-presentation
WeightClass(x) : GrpPCElt -> RngIntElt
Conditioned Presentations (FINITE SOLUBLE GROUPS)
ConditionedGroup
ConditionedGroup(G) : GrpPC -> GrpPC
Conditions
OreConditions(R, n, j) : RngPad, RngIntElt, RngIntElt -> BoolElt
SmallCancellationConditions(G) : GrpFP -> RngIntElt, RnIntElt,FldRatElt)
Contents
Index (c)
Search
V2.28, 13 July 2023