- AbelJacobi
- Abort
- Abs
- abs
- abs-and-sign
- Absolute
- AbsoluteValue(x) : Infty -> Infty
- Abs(x) : Infty -> Infty
- Abs(z) : SpcHydElt -> FldReElt
- AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
- AbsoluteAlgebra(A) : RngUPolRes -> SetCart, Map
- AbsoluteBasis(K) : FldAlg -> [FldAlgElt]
- AbsoluteBasis(K) : FldNum -> [FldNumElt]
- AbsoluteBasis(M) : ModDed -> SeqEnum
- AbsoluteCartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
- AbsoluteCharacteristicPolynomial(a) : FldAlgElt -> RngUPolElt
- AbsoluteCharacteristicPolynomial(a) : FldNumElt -> RngUPolElt
- AbsoluteDegree(A) : FldAb -> RngIntElt
- AbsoluteDegree(F) : FldFunG -> RngIntElt
- AbsoluteDegree(F) : FldNum -> RngIntElt
- AbsoluteDegree(F) : FldXPad -> RngIntElt
- AbsoluteDegree(O) : RngOrd -> RngIntElt
- AbsoluteDegree(L) : RngPad -> RngIntElt
- AbsoluteDiscriminant(A) : FldAb -> RngIntElt
- AbsoluteDiscriminant(K) : FldAlg -> FldRatElt
- AbsoluteDiscriminant(K) : FldNum -> FldRatElt
- AbsoluteDiscriminant(O) : RngFunOrd -> .
- AbsoluteDiscriminant(O) : RngOrd -> RngIntElt
- AbsoluteField(F) : FldAlg -> FldAlg
- AbsoluteField(F) : FldNum -> FldNum
- AbsoluteFunctionField(F) : FldFunG -> FldFunG
- AbsoluteGaloisGroup(A) : FldAb -> GrpPerm, SeqEnum, GaloisData
- AbsoluteGenerator(R) : FldXPad -> FldXPadElt
- AbsoluteInertiaDegree(I) : RngOrdIdl -> RngIntElt
- AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
- AbsoluteInvariants(C) : CrvHyp -> SeqEnum
- AbsoluteLogarithmicHeight(a) : FldAlgElt -> FldReElt
- AbsoluteMinimalPolynomial(a) : FldAlgElt -> RngUPolElt
- AbsoluteMinimalPolynomial(a) : FldFunElt -> RngUPolElt
- AbsoluteMinimalPolynomial(a) : FldNumElt -> RngUPolElt
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
- AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
- AbsoluteNorm(a) : FldAlgElt -> FldRatElt
- AbsoluteNorm(a) : FldFinElt -> FldFinElt
- AbsoluteNorm(a) : FldNumElt -> FldRatElt
- AbsoluteNorm(I) : RngOrdIdl -> RngIntElt
- AbsoluteOrder(O) : RngFunOrd -> RngFunOrd
- AbsoluteOrder(O) : RngOrd -> RngOrd
- AbsolutePolynomial(A) : FldAC ->
- AbsolutePrecision(x) : FldXPadElt -> RngIntElt
- AbsolutePrecision(x) : RngPadElt -> RngIntElt
- AbsolutePrecision(f) : RngSerElt -> RngIntElt
- AbsolutePrecision(e) : RngSerExtElt -> RngIntElt
- AbsoluteRamificationDegree(I) : RngOrdIdl -> RngIntElt
- AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
- AbsoluteRationalScroll(k,S) : Fld,[RngIntElt] -> TorVar
- AbsoluteRationalScroll(k,N) : Rng,SeqEnum -> PrjScrl
- AbsoluteRepresentation(G) : GrpMat -> GrpMat, Map
- AbsoluteRepresentationMatrix(a) : FldAlgElt -> AlgMatElt
- AbsoluteRepresentationMatrix(a) : FldNumElt -> NumMatElt
- AbsoluteRootNumber(K) : FldPad -> FldCycElt
- AbsoluteTotallyRamifiedExtension(R) : RngPad -> RngPad, Map
- AbsoluteTrace(a) : FldAlgElt -> FldRatElt
- AbsoluteTrace(a) : FldFinElt -> FldFinElt
- AbsoluteTrace(a) : FldNumElt -> FldRatElt
- AbsoluteValue(q) : FldRatElt -> FldRatElt
- AbsoluteValue(r) : FldReElt-> FldReElt
- AbsoluteValue(n) : RngIntElt -> RngIntElt
- AbsoluteValue(f) : RngMPolElt -> RngMPolElt
- AbsoluteValue(p) : RngUPolElt -> RngUPolElt
- AbsoluteValues(a) : FldAlgElt -> [FldReElt]
- Basis(Q) : FldRat -> [FldRatElt]
- Degree(Q) : FldRat -> RngIntElt
- Discriminant(Q) : FldRat -> RngIntElt
- IsAbsoluteField(K) : FldAlg -> BoolElt
- IsAbsoluteField(K) : FldNum -> BoolElt
- IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
- IsAbsoluteOrder(O) : RngOrd -> BoolElt
- Rank(R) : RootStr -> RngIntElt
V2.28, 13 July 2023