- A
- a
- a-infinity
- A-infinity mod 2
- A-infinity mod 3
- A-key
- a-key
- A-module
- A5
- A7cover
- A`
- A`Components
- A`DefiningGroup
- A`IsAbelian
- A`IsCentral
- A`IsNormal
- A`NormGroup
- Abel
- abel
- abel-jacobi
- abel-jacobi-gen-1
- abel-jacobi-gen-2
- abel-jacobi-sup
- Abelian
- A`IsAbelian : FldAb -> Bool
- AbelianExtension(D, U) : DivFunElt, GrpAb -> FldFunAb
- AbelianExtension(K) : FldAlg -> FldAb
- AbelianExtension(psi) : GrpHecke -> FldAb
- AbelianExtension(I) : RngOrdIdl -> FldAb
- AbelianExtension(I, P) : RngOrdIdl, [RngIntElt] -> FldAb
- AbelianFPGroup([n1,...,nr]): [ RngIntElt ] -> GrpFP
- AbelianGroup(GrpAb, Q) : Cat, [ RngIntElt ] -> GrpAb
- AbelianGroup(C, Q) : Cat, [ RngIntElt ] -> GrpFin
- AbelianGroup(GrpPerm, Q) : Cat, [ RngIntElt ] -> GrpPerm
- AbelianGroup(GrpGPC, Q) : Cat, [RngIntElt] -> GrpGPC
- AbelianGroup(GrpPC, Q) : Cat, [RngIntElt] -> GrpPC
- AbelianGroup(G) : Grp -> GrpAb, Hom
- AbelianGroup(G) : GrpDrch -> GrpAb, Map
- AbelianGroup(G) : GrpGPC -> GrpAb, Map
- AbelianGroup(G) : GrpPC -> GrpAb, Map
- AbelianGroup(J) : JacHyp -> GrpAb, Map
- AbelianGroup< X | R > : List(Var), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
- AbelianGroup(G) : ModAbVarSubGrp -> GrpAb, Map, Map
- AbelianGroup(A: parameters) : GrpAbGen -> GrpAb, Map
- AbelianGroup(H) : SetPtEll -> GrpAb, Map
- AbelianGroup([n1,...,nr]): [ RngIntElt ] -> GrpAb
- AbelianLieAlgebra(R, n) : Rng, RngIntElt -> AlgLie
- AbelianNormalQuotient(G, H) : GrpPerm, GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
- AbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
- AbelianQuotient(G) : Grp -> GrpAb, Hom
- AbelianQuotient(G) : GrpFP -> GrpAb, Map
- AbelianQuotient(G) : GrpGPC -> GrpAb, Map
- AbelianQuotient(G) : GrpMat -> GrpAb, Map
- AbelianQuotient(G) : GrpPC -> GrpAb, Map
- AbelianQuotient(G) : GrpPerm -> GrpAb, Map
- AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]
- AbelianQuotientInvariants(H) : GrpFP -> [ RngIntElt ]
- AbelianQuotientInvariants(G, n) : GrpFP, RngIntElt -> [ RngIntElt ]
- AbelianQuotientInvariants(H, n) : GrpFP, RngIntElt -> [ RngIntElt ]
- AbelianQuotientInvariants(G) : GrpGPC -> [ RngIntElt ]
- AbelianQuotientInvariants(G) : GrpPC -> SeqEnum
- AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
- AbelianSubgroups(G) : GrpPC -> SeqEnum
- AbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
- AbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
- ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
- ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
- ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
- CompositionTreeNonAbelianFactors(G) : Grp -> RngIntElt
- CompositionTreeNonAbelianFactors(G) : GrpMat[FldFin] -> List
- DefinesAbelianSubvariety(A, V) : ModAbVar, ModTupFld -> BoolElt, ModAbVar
- ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
- ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
- ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
- ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
- ElementaryAbelianSeries(G) : GrpAb -> [ GrpAb ]
- ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
- ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
- ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
- ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
- ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
- ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
- ElementaryAbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
- ElementaryAbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- ExtensionsOfElementaryAbelianGroup(p, d, G) : RngIntElt, RngIntElt, GrpPerm -> SeqEnum
- FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
- FreeAbelianGroup(n) : RngIntElt -> GrpAb
- FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
- FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
- GenericAbelianGroup(U: parameters) : . -> GrpAbGen
- Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
- HasComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
- HasFiniteAbelianQuotient(G) : GrpFP -> [ RngIntElt ]
- HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
- IsAbelian(L) : AlgLie -> BoolElt
- IsAbelian(A) : FldAb -> BoolElt
- IsAbelian(F) : FldAlg -> BoolElt
- IsAbelian(F) : FldNum -> BoolElt
- IsAbelian(K, k) : FldPad, FldPad -> BoolElt
- IsAbelian(G) : GrpFin -> BoolElt
- IsAbelian(G) : GrpGPC -> BoolElt
- IsAbelian(G) : GrpLie -> BoolElt
- IsAbelian(G) : GrpMat -> BoolElt
- IsAbelian(G) : GrpPC -> BoolElt
- IsAbelian(G) : GrpPerm -> BoolElt
- IsAbelianByFinite(G : parameters) : GrpMat -> BoolElt
- IsAbelianVariety(A) : ModAbVar -> BoolElt
- IsElementaryAbelian(G) : GrpAb -> BoolElt
- IsElementaryAbelian(G) : GrpFin -> BoolElt
- IsElementaryAbelian(G) : GrpGPC -> BoolElt
- IsElementaryAbelian(G) : GrpMat -> BoolElt
- IsElementaryAbelian(G) : GrpPC -> BoolElt
- IsElementaryAbelian(G) : GrpPerm -> BoolElt
- MaximalAbelianSubfield(K) : FldFunG -> FldFunAb
- MaximalAbelianSubfield(M) : RngOrd -> FldAb
- ModularAbelianVariety(E) : CrvEll -> ModAbVar
- ModularAbelianVariety(L) : ModAbVarLSer -> ModAbVar
- ModularAbelianVariety(f) : ModFrmElt -> ModAbVar
- ModularAbelianVariety(M) : ModSym -> ModAbVar
- ModularAbelianVariety(eps : parameters) : GrpDrchElt -> ModAbVar
- ModularAbelianVariety(M : parameters) : ModFrm -> ModAbVar
- ModularAbelianVariety(s : parameters) : MonStgElt -> ModAbVar
- ModularAbelianVariety(X : parameters) : [ModFrm] -> ModAbVar
- ModularAbelianVariety(X) : [ModSym] -> ModAbVar
- MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map, BoolElt, BoolElt
- NumberOfSubgroupsAbelianPGroup (A) : SeqEnum -> SeqEnum
- OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
- PrimaryAbelianBasis(A) : GrpAb -> [ GrpAbElt ], [ RngIntElt ]
- PrimaryAbelianBasis(G) : GrpFin -> [ GrpFinElt ], [ RngIntElt ]
- PrimaryAbelianBasis(G) : GrpMat -> [ GrpMatElt ], [ RngIntElt ]
- PrimaryAbelianBasis(G) : GrpPC -> [ GrpPCElt ], [ RngIntElt ]
- PrimaryAbelianBasis(G) : GrpPerm -> [ GrpPermElt ], [ RngIntElt ]
- PrimaryAbelianInvariants(A) : GrpAb -> [ RngIntElt ]
- PrimaryAbelianInvariants(G) : GrpFin -> [ RngIntElt ]
- PrimaryAbelianInvariants(G) : GrpMat -> [ RngIntElt ]
- PrimaryAbelianInvariants(G) : GrpPC -> [RngIntElt]
- PrimaryAbelianInvariants(G) : GrpPerm -> [ RngIntElt ]
- RandomAbelianSurface_d10g6(P) : Prj -> Srfc
- RayClassField(m) : Map -> FldAb
- RecogniseAbelian (G) : GrpMat -> GrpGPC, Map, Map
- SClassGroupAbelianInvariants(S) : SetEnum[PlcFunElt] -> SeqEnum
- ZeroModularAbelianVariety() : -> ModAbVar
- ZeroModularAbelianVariety(k) : RngIntElt -> ModAbVar
- pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
- GrpFPInt_Abelian (Example H77E7)
V2.28, 13 July 2023