- WeightLattice
- WeightOneHalfData
- WeightOrbit
- Weights
- AssignCapacities(~G, D) : GrphMult, [RngIntElt] ->
- AssignWeights(~G, D) : GrphMult, [RngElt] ->
- AssignEdgeLabels(~G, D) : GrphMult, SeqEnum ->
- AssignLabels(~G, S, D) : GrphMult, [GrphEdge], SeqEnum ->
- ColumnWeights(M) : ModMPol -> [ RngIntElt ]
- ColumnWeights(A) : MtrxSprs -> [RngIntElt]
- DeleteEdgeLabels(~G) : GrphMult ->
- DeleteLabels(~G, S) : GrphMult, [GrphEdge] ->
- DominantWeights(R, w) : RootDtm, [ ] -> [ ModTupRngElt ], [ RngIntElt ]
- EdgeLabels(G) : GrphMult -> SeqEnum
- FanWithWeights(W) : SeqEnum -> TorFan
- FirstWeights(X) : GRSch -> SeqEnum
- FundamentalWeights(G) : GrpLie -> Mtrx
- FundamentalWeights(W) : GrpMat -> Mtrx
- FundamentalWeights(W) : GrpPermCox -> SeqEnum
- FundamentalWeights(R) : RootDtm -> Mtrx
- Grading(P) : RngMPol -> [ RngIntElt ]
- HighestWeights(ρ) : Map -> [LatElt], [ModTupRngElt]
- HighestWeightsAndVectors(V) : ModAlg -> SeqEnum, SeqEnum
- HighestWeightsAndVectors(V) : ModAlg -> SeqEnum, SeqEnum
- HomogeneousWeightsSearch(S) : [ RngMPol ] -> BoolElt, [ RngIntElt ]
- Labels(E) : GrphEdgeSet -> SeqEnum
- Labels(S) : [GrphEdge] -> SeqEnum
- MinimiseWeights(~X) : GRSch ->
- MonodromyWeights(M) : ModSS -> SeqEnum
- NoetherWeights(X) : GRSch -> SeqEnum
- PermuteWeights(D, pi, S) : LieRepDec, GrpPermElt, RootDtm -> LieRepDec
- RowWeights(A) : MtrxSprs -> [RngIntElt]
- SpecialWeights(G) : GrpPC -> [ <RngIntElt, RngIntElt, RngIntElt> ]
- SubWeights(D, Q, S) : LieRepDec, SeqEnum, RootDtm -> LieRepDec
- Weights(X) : GRSch -> SeqEnum
- Weights(D) : LieRepDec -> SeqEnum, SeqEnum
- Weights(ρ) : Map -> [LatElt], [ModTupRngElt]
- Weights(ρ) : Map -> [ModTupRngElt]
- Weights(A) : ModAbVar -> Set
- Weights(V) : ModAlg -> SeqEnum, SeqEnum
- Weights(V) : SSGalRep -> SeqEnum
- WeightsAndVectors(V) : ModAlg -> SeqEnum, SeqEnum
- WeightsOfFlip(X,i) : TorVar,RngIntElt -> SeqEnum
- GrpRfl_Weights (Example H106E26)
- RootDtm_Weights (Example H104E24)
- weights
- WeightsAndMultiplicities
- WeightsAndVectors
- WeightSequence
- WeightsOfFlip
- WeightToPartition
- WeightVectors
- Weil
- CartierToWeilMap(X) : TorVar -> Map
- CheckWeilPolynomial(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt
- FrobeniusTracesToWeilPolynomials(tr, q, i, deg) : SeqEnum, RngIntElt, RngIntElt, RngIntElt -> SeqEnum
- GaloisRepresentation(pi) : RepLoc -> GalRep
- GeometricMordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
- IsWeil(D) : DivTorElt -> BoolElt
- MordellWeilGroup(J) : JacHyp -> GrpAb, Map, BoolElt, BoolElt
- MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
- MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map, BoolElt, BoolElt
- MordellWeilGroupGenus2(J) : JacHyp -> GrpAb, Map, BoolElt, BoolElt, RngIntElt
- MordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
- MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
- NaiveHeight(P) : PtEll -> FldPrElt
- Rank(H: parameters) : SetPtEll -> RngIntElt, BoolElt
- RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt
- RestrictionOfScalars(S, F) : Sch, Fld -> Sch, MapSch, UserProgram, Map
- Weil(D) : DivTorElt -> SeqEnum
- WeilDescent(E,k) : FldFun, FldFin -> FldFunG, Map
- WeilDescent(E, k, c) : FldFun, FldFin, FldFinElt -> CrvPln, Map
- WeilDescentDegree(E,k) : FldFun, FldFin -> RngIntElt
- WeilDescentDegree(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
- WeilDescentGenus(E,k) : FldFun, FldFin -> RngIntElt
- WeilDescentGenus(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
- WeilPairing(P, Q, m) : JacHypPt, JacHypPt, RngIntElt -> RngElt
- WeilPairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
- WeilPairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
- WeilPolynomialOfDegree2K3Surface(f6) : RngMPolElt -> RngUPolElt, RngUPolElt
- WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
- WeilPolynomialToRankBound(f, q) : RngUPolElt, RngIntElt -> RngIntElt
- WeilRestriction(E, n) : FldFun, RngIntElt -> FldFun, UserProgram
- WeilToClassGroupsMap(C) : RngCox -> Map
V2.28, 13 July 2023