- R-key
- r-key
- Radical
- ArithmeticRadical(O, p) : AlgAssVOrd[RngOrd], RngOrdIdl -> AlgAssVOrdIdl
- CyclicToRadical(K, a, z) : FldFun, FldFunElt, RngElt -> FldFun, [FldFunElt], [FldFunElt]
- CyclicToRadical(K, a, z) : FldNum, FldNumElt, RngElt -> FldNum, [FldNumElt], [FldNumElt]
- IsInRadical(f, I) : RngMPolElt, RngMPol -> BoolElt
- IsRadical(I) : RngMPol -> BoolElt
- IsRadical(I) : RngMPolRes -> BoolElt
- IsomorphismTypesOfRadicalLayers(M) : ModAlgBas -> SeqEnum
- JacobsonRadical(A) : AlgAssV -> AlgAssV
- JacobsonRadical(A) : AlgGen -> AlgGen
- JacobsonRadical(M) : ModAlg -> ModAlg
- JacobsonRadical(M) : ModRng -> ModRng, Map
- JacobsonRadical(e) : SubModLatElt -> SubModLatElt
- LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map
- LMGUnipotentRadical(G) : GrpMat -> GrpMat, GrpPC, Map
- ProbableRadicalDecomposition(I) : RngMPol -> [ RngMPol ]
- Radical(G) : GrpFin -> GrpFin
- Radical(G) : GrpMat -> GrpMat
- Radical(G) : GrpPerm -> GrpPerm
- Radical(V : parameters) : ModTupFld -> ModTupFld
- Radical(I) : RngMPol -> RngMPol
- Radical(R) : RootDtm -> RootDtm
- Radical(T) : TenSpcElt -> Tup
- Radical(T, s) : TenSpcElt, RngIntElt -> ModTupRng
- RadicalDecomposition(I) : RngMPol -> [ RngMPol ]
- RadicalDecomposition(I) : RngMPolRes -> [ RngMPolRes ]
- RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldAlg
- RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldNum
- RadicalIdealizer(O, p) : AlgAssVOrd[RngOrd], RngOrdIdl -> AlgAssVOrd
- RadicalQuotient(G) : GrpMat -> GrpPerm, Hom(Grp), GrpMat
- RadicalQuotient(G) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
- SequenceOfRadicalGenerators(A) : AlgMat -> SeqEnum
- SingularRadical(V) : ModTupFld -> ModTupFld
- SolubleRadical(L) : AlgLie -> AlgLie
- SolubleRadical(G) : GrpLie -> GrpLie
- GrpPerm_Radical (Example H64E34)
- Ideal_Radical (Example H113E9)
- radical
- radical-decomposition
- RadicalDecomposition
- RadicalExtension
- RadicalIdealizer
- RadicalLayers
- RadicalQuotient
- Radicals
- radicals
- Radicand
- Radius
- ram_pred
- Ramification
- AbsoluteInertiaDegree(L) : FldXPad -> RngIntElt
- AbsoluteInertiaIndex(L) : FldXPad -> RngIntElt
- AbsoluteRamificationDegree(L) : FldXPad -> RngIntElt
- AbsoluteRamificationIndex(L) : FldXPad -> RngIntElt
- AbsoluteDegree(F) : FldXPad -> RngIntElt
- AbsoluteRamificationDegree(I) : RngOrdIdl -> RngIntElt
- AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
- DecompositionGroup(L) : RngLocA -> GrpPerm
- InertiaDegree(L) : RngLocA -> RngIntElt
- RamificationDegree(L, K) : FldXPad, FldXPad -> RngIntElt
- RamificationDegree(I) : RngOrdIdl -> RngIntElt
- RamificationDegree(L) : RngPad -> RngIntElt
- RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
- RamificationDivisor(C) : Crv -> DivCrvElt
- RamificationDivisor(D) : DivCrvElt -> DivCrvElt
- RamificationDivisor(D) : DivFunElt -> DivFunElt
- RamificationDivisor(F) : FldFunG -> DivFunElt
- RamificationDivisor(m) : MapSch -> DivCrvElt
- RamificationField(p) : RngOrdIdl -> FldNum, Map
- RamificationField(p, i) : RngOrdIdl, RngIntElt -> FldNum, Map
- RamificationGroup(p) : RngOrdIdl -> GrpPerm
- RamificationGroup(p, i) : RngOrdIdl, RngIntElt -> GrpPerm
- RamificationIndex(P) : PlcFunElt -> RngIntElt
- RamificationIndex(P) : PlcNumElt -> RngIntElt
- RamificationIndex(P) : PlcNumElt -> RngIntElt
- RamificationIndex(P) : RieSrfPt -> RngIntElt
- RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
- RamificationIndex(I, p) : RngInt, RngIntElt -> RngIntElt
- RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
- RamificationIndex(E) : RngSerExt -> RngIntElt
- RamificationPoints(X) : RieSrf -> SeqEnum[RieSrfPt]
- RamificationPolygon(L) : FldXPad -> NwtnPgon
- RamificationResidualPolynomial(f, face) : RngUPolElt[FldXPad], NwtnPgonFace -> RngUPolElt
- RamificationResidualPolynomials(f) : RngUPolElt[FldXPad] -> SeqEnum, NwtnPgon
- RngOrdGal_Ramification (Example H40E2)
V2.28, 13 July 2023