- ProbableRadicalDecomposition
- Probably
- Problem
- proc
- procedure
- procedure-expression
- Procedures
- Process
- CentralExtensionProcess(G, U) : GrpPC, GrpPC -> Proc
- CloseVectorsProcess(L, w, u) : Lat, ModTupRngElt, RngElt -> LatEnumProc
- CosetEnumerationProcess(G, H: parameters) : GrpFP, GrpFP -> GrpFPCosetEnumProc
- ExtensionProcess(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFPExtProc
- ExtensionProcess(G, M, F) : GrpPerm, ModRng, GrpFP -> Process
- HomomorphismsProcess(F, G, A : parameters) : GrpFP, GrpPerm, GrpPerm -> GrpFPHomsProc
- IsEmptySimpleQuotientProcess(P) : Rec -> BoolElt
- IsolProcess() : -> Process
- IsolProcessOfDegree(d) : . -> Process
- IsolProcessOfDegreeField(d, p) : ., . -> Process
- IsolProcessOfField(p) : . -> Process
- LowIndexProcess(G, R : parameters) : GrpFP, RngIntElt -> Process(Lix)
- PositiveConjugatesProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
- PrimitiveGroupProcess(d: parameters) : RngIntElt -> Process
- PrimitiveGroupProcess(d, f: parameters) : RngIntElt, Program -> Process
- ProcessLadder(L, G, U) : [GrpPerm], GrpPerm, GrpPerm -> Rec
- RandomProcess(G) : GrpAb -> Process
- RandomProcess(G) : GrpFin -> Process
- RandomProcess(G) : GrpGPC -> Process
- RandomProcess(G) : GrpMat -> Process
- RandomProcess(G) : GrpPC -> Process
- RandomProcess(G) : GrpPerm -> Process
- RandomProcess(G) : GrpSLP -> Process
- SUnitCohomologyProcess(S, U) : {RngOrdIdl}, GrpPerm -> {1}
- SetProcessParameters(~P: parameters) : GrpFPCosetEnumProc ->
- ShortVectorsProcess(L, u) : Lat, RngElt -> LatEnumProc
- SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Rec
- SmallGroupProcess(o: parameters) : RngIntElt -> Process
- SmallGroupProcess(o, f: parameters) : RngIntElt, Program -> Process
- SmallGroupProcess(S: parameters) : [RngIntElt] -> Process
- SmallGroupProcess(S, f: parameters) : [RngIntElt], Program -> Process
- SuperSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
- TietzeProcess(G: parameters) : GrpFP -> Process(Tietze)
- TransitiveGroupProcess(d) : RngIntElt -> Process
- TransitiveGroupProcess(d, f) : RngIntElt, Program -> Process
- TransitiveGroupProcess(S) : [RngIntElt] -> Process
- TransitiveGroupProcess(S, f) : [RngIntElt], Program -> Process
- TransversalProcess(G, H) : GrpPerm, GrpPerm -> GrpPermTransProc
- TransversalProcessNext(P) : GrpPermTransProc -> GrpPermElt
- TransversalProcessRemaining(P) : GrpPermTransProc -> RngIntElt
- UltraSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
- pQuotientProcess(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> Process
- process
- ProcessLadder
- Product
- InnerProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
- (u, v) : ModTupFldElt, ModTupFldElt -> FldElt
- (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
- (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
- (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
- (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
- D * E : LieRepDec, LieRepDec -> LieRepDec
- BasisProduct(C, i, j) : AlgClff, RngIntElt, RngIntElt -> AlgGenElt
- BasisProduct(C, L) : AlgClff, SeqEnum -> AlgGenElt
- BasisProduct(A, i, j) : AlgGen, RngIntElt, RngIntElt -> AlgGenElt
- BasisProduct(L, i, j) : AlgLie, RngIntElt, RngIntElt -> AlgLieElt
- CartesianProduct(G, H) : GrphDir, GrphDir -> GrphDir
- CartesianProduct(R, S) : Str, ..., Str -> SetCart
- CartesianProduct(L) : [Str] -> SetCart
- DecomposeTensorProduct(R, w, x) : RootDtm, [ ], [ ] -> [ ModTupRngElt ], [ RngIntElt ]
- DirectProduct(C, D) : Code, Code -> Code
- DirectProduct(C, D) : Code, Code -> Code
- DirectProduct(C, D) : Code, Code -> Code
- DirectProduct(G, H) : Grp, Grp -> Grp
- DirectProduct(G, H) : GrpFP, GrpFP -> GrpFP
- DirectProduct(G, H) : GrpGPC, GrpGPC -> GrpGPC, [Map], [Map]
- DirectProduct(G1, G2) : GrpLie, GrpLie -> GrpLie
- DirectProduct(G, H) : GrpMat, GrpMat -> GrpMat
- DirectProduct(G, H) : GrpPC, GrpPC -> GrpPC, [Map], [Map]
- DirectProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
- DirectProduct(W1, W2) : GrpPermCox, GrpPermCox -> GrpPermCox
- DirectProduct(A,B) : Prj,Prj -> PrjProd,SeqEnum
- DirectProduct(A,B) : Sch,Sch -> Sch,SeqEnum
- DirectProduct(R, S) : SgpFP, SgpFP -> SgpFP
- DirectProduct(Q) : [ Grp ] -> Grp
- DirectProduct(Q) : [ GrpFP ] -> GrpFP
- DirectProduct(Q) : [ GrpMat ] -> GrpMat
- DirectProduct(Q) : [ GrpPerm ] -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
- DirectProduct(Q) : [GrpPC] -> GrpPC, [ Map ], [ Map ]
- DirectSum(A, B) : ModAbVar, ModAbVar -> ModAbVar, List, List
- DirectSum(X) : [ModAbVar] -> ModAbVar, List, List
- DotProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
- DotProductMatrix(S) : SeqEnum[ModTupFldElt] -> AlgMatElt
- EulerProduct(O, B) : RngOrd, RngIntElt -> FldReElt
- FreeProduct(G, H) : GrpFP, GrpFP -> GrpFP
- FreeProduct(R, S) : SgpFP, SgpFP -> SgpFP
- FreeProduct(Q) : [ GrpFP ] -> GrpFP
- GTensorProduct(M, N) : ModGrp, ModGrp -> ModGrp, Map
- GTensorProduct(M, N, H) : ModGrp, ModGrp, Grp -> ModGrp, Map
- InnerProduct(x, y) : AlgChtrElt, AlgChtrElt -> FldCycElt
- InnerProduct(a, b) : AlgGenElt, AlgGenElt -> RngElt
- InnerProduct(a, b) : AlgLieElt, AlgLieElt -> RngElt
- InnerProduct(a,b): AlgSymElt, AlgSymElt -> RngElt
- InnerProduct(e1, e2) : HilbSpcElt, HilbSpcElt -> HilbSpcElt
- InnerProduct(v, w) : LatElt, LatElt -> RngElt
- InnerProduct(v, w) : LatNFElt, LatNFElt -> FldNumElt
- InnerProduct(x, y) : ModBrdtElt, ModBrdtElt -> RngElt
- InnerProductMatrix(L) : Lat -> AlgMatElt
- InnerProductMatrix(L) : LatNF -> Mtrx
- InnerProductMatrix(M) : ModBrdt -> AlgMatElt
- InnerProductMatrix(V) : ModTupRng -> AlgMatElt
- InnerProductScaling(L, r) : LatNF, RngElt -> LatNF
- IsProductOfParallelDescendingCycles(p) : GrpPermElt -> BoolElt
- IsWreathProduct(G) : GrpPerm -> BoolElt, GrpPerm, GrpPerm, GrpPerm
- JordanTripleProduct(J) : AlgGen -> TenSpcElt
- KroneckerProduct(A, B) : Mtrx, Mtrx -> Mtrx
- LexProduct(G, H) : GrphDir, GrphDir -> GrphDir
- MakeAmbientInnerProduct(~L, IP) : LatNF ->
- MasseyProduct(Aoo,terms) : Rec, SeqEnum[RngElt] -> RngElt
- NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
- OrthogonalTensorProduct(V, W) : ModTupFld, ModTupFld -> ModTupFld
- PowerProduct(B, E) : [RngOrdFracIdl], [RngIntElt] -> RngOrdFracIdl
- PrimitiveWreathProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm
- PrimitiveWreathProduct(Q) : [ GrpPerm ] -> GrpPerm
- Product(S,T) : SmpCpx, SmpCpx -> SmpCpx
- ProductProjectiveSpace(k,N) : Rng,SeqEnum -> PrjScrl
- ProductRepresentation(a) : FldFunGElt -> [FldFunGElt], [RngIntElt]
- ProductRepresentation(a) : FldNumElt -> [ FldNumElt ], [ RngIntElt ]
- ProductRepresentation(D, E, R) : LieRepDec, LieRepDec, RootDtm -> LieRepDec
- ProductRepresentation(a) : RngOrdElt -> [ RngOrdElt ], [ RngIntElt ]
- ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
- ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
- ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt
- RedRelatorsForFreeProduct(groupList, freeFacs) : List, RngIntElt ->GrpFP, SeqEnum, SeqEnum, Map, SeqEnum
- SegreProduct(Xs) : SeqEnum[Sch] -> Sch, SeqEnum
- SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map, Map
- SymplecticInnerProduct(v1, v2) : ModTupFldElt, ModTupFldElt -> FldFinElt
- TensorProduct(A, B) : AlgBas, AlgBas-> AlgBas
- TensorProduct(A, B) : AlgMat, AlgMat -> AlgMat
- TensorProduct(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
- TensorProduct(G, H) : GrphDir, GrphDir -> GrphDir
- TensorProduct(H1, H2) : HodgeStruc, HodgeStruc -> HodgeStruc
- TensorProduct(L, M) : Lat, Lat -> Lat
- TensorProduct(D, E) : LieRepDec, LieRepDec -> .
- TensorProduct(B1, B2): LRModGrp, LRModGrp -> LRModGrp
- TensorProduct(L1, L2, ExcFactors) : LSer, LSer, [<>] -> LSer
- TensorProduct(C, N) : ModCpx, ModMPol -> ModMPol
- TensorProduct(M, N) : ModGrp, ModGrp -> ModGrp
- TensorProduct(M, N) : ModMat, ModMat -> ModMat
- TensorProduct(M, N) : ModMPol, ModMPol -> ModMPol, Map
- TensorProduct(U, V) : ModTupFld, ModTupFld -> FldElt
- TensorProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
- TensorProduct(R, v, w) : RootDtm, ModTupRngElt, ModTupRngElt -> .
- TensorProduct(Q) : SeqEnum -> ModAlg, Map
- TensorProduct(Q) : SeqEnum -> ModAlg, Map
- TensorProduct(Q) : SeqEnum -> ModAlg, Map
- TensorProduct(S, T) : ShfCoh, ShfCoh -> ShfCoh
- TensorProduct(t, s) : TenSpcElt, TenSpcElt -> TenSpcElt
- TensorProduct(Q) : [LieRepDec] -> LieRepDec
- TensorWreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
- TraceInnerProduct(K, u, v) : FldFin, ModTupFldElt, ModTupFldElt -> FldFinElt
- TraceOfProduct(A, B) : Mtrx, Mtrx -> RngElt
- WreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
- WreathProduct(G, H) : GrpPC, GrpPC -> GrpPC
- WreathProduct(G, H, f) : GrpPC, GrpPC, Map -> GrpPC
- WreathProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, SeqEnum[Map], Map, Map
- WreathProduct(G, B) : GrpPerm, GSet -> GrpPerm, GrpPerm, GrpPerm
- WreathProduct(B) : GSet -> GrpPerm, GrpPerm, GrpPerm
- WreathProduct(Q) : [ GrpPerm ] -> GrpPerm
V2.28, 13 July 2023