- NGPUs
- NGrad
- Nice
- NiceUnitSquareClassRepresentative
- NilpOrbGenuine
- Nilpotency
- NilpotencyClass
- Nilpotent
- CyclicSubgroups(G) : GrpPC -> SeqEnum
- ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
- NilpotentSubgroups(G) : GrpPC -> SeqEnum
- AbelianSubgroups(G) : GrpPC -> SeqEnum
- AllNilpotentLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
- FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
- IsIrreducibleFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
- IsNilpotent(f) : AlgFPElt -> BoolElt, RngIntElt
- IsNilpotent(a) : AlgGenElt -> BoolElt, RngIntElt
- IsNilpotent(L) : AlgLie -> BoolElt
- IsNilpotent(a) : AlgMatElt -> BoolElt, RngIntElt
- IsNilpotent(G) : GrpFin -> BoolElt
- IsNilpotent(G) : GrpGPC -> BoolElt
- IsNilpotent(G) : GrpMat -> BoolElt
- IsNilpotent(G) : GrpMat -> BoolElt
- IsNilpotent(G) : GrpPC -> BoolElt
- IsNilpotent(G) : GrpPerm -> BoolElt
- IsNilpotent(x) : RngElt -> BoolElt
- IsNilpotent(f) : RngMPolResElt -> BoolElt, RngIntElt
- IsNilpotentByFinite(G : parameters) : GrpMat -> BoolElt
- IsPrimitiveFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
- LMGIsNilpotent(G) : GrpMat -> BoolElt
- NilpotentBoundary(G,i) : GrpPC, RngIntElt -> RngIntElt
- NilpotentLength(G) : GrpPC -> RngIntElt
- NilpotentLieAlgebra( F, r, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
- NilpotentOrbit( L, e ) : AlgLie, AlgLieElt -> NilpOrbAlgLie
- NilpotentOrbit( L, wd ) : AlgLie, SeqEnum -> NilpOrbAlgLie
- NilpotentOrbits( L ) : AlgLie -> SeqEnum
- NilpotentPresentation(G) : GrpGPC -> GrpGPC, Map
- NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
- NilpotentSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
- NilpotentSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- NonNilpotentElement(L) : AlgLie -> AlgLieElt
- nilpotent
- nilpotent-orbits
- nilpotent-quotient
- nilpotent_groups
- NilpotentBoundary
- NilpotentLength
- NilpotentLieAlgebra
- NilpotentOrbit
- NilpotentOrbits
- NilpotentPresentation
- NilpotentQuotient
- NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
- NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
- AlgLie_NilpotentQuotient (Example H107E9)
- NilpotentQuotient0
V2.28, 13 July 2023