- indecomposable
- indecomposable-projective-modules
- IndecomposableSummands
- Indefinite
- indefinite
- InDegree
- Indent
- indent
- IndentPop
- IndentPush
- Independence
- IndependenceNumber
- Independent
- IndependentUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
- IndependentUnits(O) : RngOrd -> GrpAb, Map
- IsIndependent(Q) : [ AlgGen ] -> BoolElt
- IsIndependent(Q) : [ AlgLieElt ] -> BoolElt
- IsIndependent(Q) : [ ModTupFldElt ] -> BoolElt
- IsIndependent(S) : { ModTupFldElt } -> BoolElt
- IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
- IsLinearlyIndependent(P, Q) : PtEll, PtEll -> BoolElt, ModTupElt
- IsLinearlyIndependent(P, Q, n) : PtEll, PtEll, RngIntElt -> BoolElt
- IsLinearlyIndependent(S) : [ PtEll ] -> BoolElt, ModTupElt
- IsLinearlyIndependent(S, n) : [ PtEll ], RngIntElt -> BoolElt
- MaximumIndependentSet(G: parameters) : GrphUnd -> { GrphVert }
- independent
- IndependentGenerators
- IndependentUnits
- Indeterminacy
- IndeterminacyLocus
- Index
- AbsoluteInertiaDegree(L) : FldXPad -> RngIntElt
- AbsoluteInertiaIndex(L) : FldXPad -> RngIntElt
- AbsoluteRamificationDegree(L) : FldXPad -> RngIntElt
- AbsoluteRamificationIndex(L) : FldXPad -> RngIntElt
- AbsoluteDegree(F) : FldXPad -> RngIntElt
- AbsoluteInertiaDegree(I) : RngOrdIdl -> RngIntElt
- AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
- AbsoluteRamificationDegree(I) : RngOrdIdl -> RngIntElt
- AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
- CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC
- ChromaticIndex(G) : GrphUnd -> RngIntElt
- CliffordIndexOne(C) : Crv -> MapSch
- FactoredIndex(G, H) : GrpAb, GrpAb -> [<RngIntElt, RngIntElt>]
- FactoredIndex(G, H) : GrpFin, GrpFin -> [ <RngIntElt, RngIntElt> ]
- FactoredIndex(G, H) : GrpGPC, GrpGPC -> [<RngIntElt, RngIntElt>]
- FactoredIndex(G, H) : GrpMat, GrpMat -> [ <RngIntElt, RngIntElt> ]
- FactoredIndex(G, H) : GrpPC, GrpPC -> [<RngIntElt, RngIntElt>]
- FactoredIndex(G, H) : GrpPerm, GrpPerm -> [ <RngIntElt, RngIntElt> ]
- FanoIndex(X) : GRFano -> RngIntElt
- FirstIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
- FirstIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
- GorensteinIndex(C) : TorCon -> RngIntElt,TorLatElt
- GorensteinIndex(P) : TorPol -> RngIntElt
- HasFiniteIndex(F, H) : GrpFP, GrpFP -> BoolElt
- HasFiniteIndex (G, H) : GrpMat, GrpMat -> BoolElt
- HasIndexOne(C,p) : CrvHyp, RngIntElt -> BoolElt
- HasIndexOneEverywhereLocally(C) : CrvHyp -> BoolElt
- HasValidIndex(P) : GrpFPCosetEnumProc -> BoolElt
- Index(x) : CopElt -> RngIntElt
- Index(D,X) : DB,GRK3 -> RngIntElt,GRK3
- Index(C) : GRCrvS -> RngIntElt
- Index(G, H) : GrpAb, GrpAb -> RngIntElt
- Index(G, H) : GrpFin, GrpFin -> RngIntElt
- Index(F, H) : GrpFP, GrpFP -> RngIntElt
- Index(P) : GrpFPCosetEnumProc -> RngIntElt
- Index(G, H) : GrpGPC, GrpGPC -> RngIntElt
- Index(e) : GrphEdge -> RngIntElt
- Index(v) : GrphResVert -> RngIntElt
- Index(v) : GrphSplVert -> RngIntElt
- Index(v) : GrphVert -> RngIntElt
- Index(G, H) : GrpMat, GrpMat -> RngIntElt
- Index(G, H) : GrpPC, GrpPC -> RngIntElt
- Index(G, H) : GrpPerm, GrpPerm -> RngIntElt
- Index(G) : GrpPSL2 -> RngIntElt
- Index(G,H) : GrpPSL2, GrpPSL2 -> RngIntElt
- Index(p) : GRPtS -> RngIntElt
- Index(H2, H1) : HomModAbVar, HomModAbVar -> RngIntElt
- Index(L, S): Lat, Lat -> RngInt
- Index(s, t) : MonStgElt, MonStgElt -> RngIntElt
- Index(G, H: parameters) : GrpFP, GrpFP -> RngIntElt
- Index(P, l) : Plane, PlaneLn -> RngIntElt
- Index(P, p) : Plane, PlanePt -> RngIntElt
- Index(O, S) : RngFunOrd, RngFunOrd -> Any
- Index(O, S) : RngOrd, RngOrd -> RngIntElt
- Index(O, I) : RngOrd, RngOrdIdl -> RngIntElt
- Index(a) : RngOrdElt -> RngIntElt
- Index(s, i, n) : RngPowLazElt, [RngIntElt], [RngIntElt] -> RngIntElt
- Index(S, x) : SeqEnum, Elt -> RngIntElt
- Index(S, x) : SetIndx, Elt -> RngIntElt
- Index(FS) : SymFry -> RngIntElt
- Index(C) : TorCon -> RngIntElt
- IndexCalculus(D1, D2, D0, np) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt -> RngIntElt
- IndexCalculusMatrix(D1, D2, D0, n, rr) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt -> MtrxSprs, SeqEnum, SeqEnum, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt
- IndexFormEquation(O, k) : RngOrd, RngIntElt -> [ RngOrdElt ]
- IndexOfPartition(P) : SeqEnum -> RngIntElt
- IndexOfSU(G) : GrpMat -> RngIntElt
- IndexOfSp(G) : GrpMat -> RngIntElt
- IndexOfSpeciality(D) : DivCrvElt -> RngIntElt
- IndexOfSpeciality(D) : DivFunElt -> RngIntElt
- InertiaDegree(L) : RngLocA -> RngIntElt
- LMGLowIndexSubgroups(G,n) : GrpMat, RngIntElt -> SeqEnum
- LastIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
- LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
- LowIndexNormalSubgroups(G, n: parameters) : GrpFP, RngIntElt -> [ Rec ]
- LowIndexProcess(G, R : parameters) : GrpFP, RngIntElt -> Process(Lix)
- LowIndexSubgroups(G, n) : GrpPC, RngIntElt -> []
- LowIndexSubgroups(G, R : parameters) : GrpFP, RngIntElt -> [ GrpFP ]
- LowIndexSubgroups(G, N, n: parameters) : GrpMat, RngIntElt -> SeqEnum
- LowIndexSubgroups(G,n: parameters) : GrpMat, RngIntElt -> SeqEnum
- LowIndexSubgroups(G, N, n: parameters) : GrpPerm, RngIntElt -> SeqEnum
- LowIndexSubgroups(G, n: parameters) : GrpPerm, RngIntElt -> SeqEnum
- LowIndexSubgroupsCT(G, R : parameters) : GrpMat, RngIntElt -> [ GrpMat ]
- RamificationDegree(L, K) : FldXPad, FldXPad -> RngIntElt
- RamificationDegree(I) : RngOrdIdl -> RngIntElt
- RamificationDegree(L) : RngPad -> RngIntElt
- RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
- RamificationIndex(P) : PlcFunElt -> RngIntElt
- RamificationIndex(P) : PlcNumElt -> RngIntElt
- RamificationIndex(P) : PlcNumElt -> RngIntElt
- RamificationIndex(P) : RieSrfPt -> RngIntElt
- RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
- RamificationIndex(I, p) : RngInt, RngIntElt -> RngIntElt
- RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
- RamificationIndex(E) : RngSerExt -> RngIntElt
- SchurIndex(x) : AlgChtrElt -> RngIntElt
- SchurIndexGroup(n: parameters) : RngIntElt -> GrpPC
- TerminalIndex(p) : GRPtS -> RngIntElt
- TransverseIndex(C) : GRCrvS -> RngIntElt
- WittIndex(V) : ModTupFld -> RngIntElt
V2.28, 13 July 2023