- HasNegativeWeightCycle
- HasNonsingularPoint
- HasOddDegreeModel
- HasOnlyOrdinarySingularities
- HasOnlyOrdinarySingularitiesMonteCarlo
- HasOnlySimpleSingularities
- HasOrder
- HasOutputFile
- Hasp
- HasParallelClass
- HasParallelism
- HasPlace
- RandomPlace(C, m) : Crv[FldFin], RngIntElt -> BoolElt,PlcCrvElt
- HasPlace(C, m) : Crv[FldFin], RngIntElt -> BoolElt,PlcCrvElt
- HasPlace(F, m) : FldFun, RngIntElt -> PlcFunElt
- HasPlace(F, m) : FldFunG, RngIntElt -> BoolElt, PlcFunElt
- HasPoint
- HasPointsEverywhereLocally
- HasPointsOverExtension
- HasPolynomial
- HasPolynomialFactorization
- HasPositiveH1Dimension
- HasPowerSumBasis
- HaspQuotientDefinitions
- HasPreimage
- HasProjectiveDerivation
- HasPRoot
- HasRandomPlace
- HasRationalPoint
- HasRationalSolutions
- HasResolution
- HasResultant
- HasRoot
- HasRootOfUnity
- HasSchurBasis
- Hasse
- HasseInvariant
- HasseMinkowskiInvariant
- HasseMinkowskiInvariants
- HasseWittInvariant
- HasSingularPointsOverExtension
- HasSingularVector
- HasSparseRep
- HasSparseRepOnly
- HasSquareSha
- HasStringProperty
- HasSupplement
- HasTotallyPositiveGenerator
- HasTwistedHopfStructure
- HasValidCosetTable
- HasValidIndex
- HasWeakIntersectionProperty
- HasZeroDerivation
- HBinomial
- HE
- Hecke
- BasicAlgebraOfHeckeAlgebra(G, H, F): GrpPerm, GrpPerm, FldFin) -> AlgBas
- DeleteHeckePrecomputation(O) : AlgAssVOrd ->
- DirichletCharacter(I, B) : RngOrdIdl, Tup -> GrpDrchNFElt, GrpDrchNF
- DiscriminantOfHeckeAlgebra(M : Bound) : ModSym -> RngIntElt
- DualHeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
- FactoredHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
- HeckeAlgebra(M : Bound) : ModSym -> AlgMat
- HeckeAlgebra(A) : ModAbVar -> HomModAbVar
- HeckeBound(M) : ModSym -> RngIntElt
- HeckeCharacter(A) : ArtRep -> GrpHeckeElt
- HeckeCharacterGroup(A) : FldAb -> GrpHecke
- HeckeCharacterGroup(L) : FldNum -> GrpHecke
- HeckeCharacterGroup(I) : RngOrdIdl -> GrpHecke
- HeckeEigenvalue(f, p) : ModBrdtElt, RngElt -> RngElt
- HeckeEigenvalue(f, P) : ModFrmHilElt, RngOrdIdl -> FldAlgElt
- HeckeEigenvalueBound(M, P) : ModFrmHil, RngOrdIdl -> RngIntElt
- HeckeEigenvalueField(M) : ModFrmHil -> Fld
- HeckeEigenvalueField(M) : ModSym -> Fld, Map
- HeckeEigenvalueRing(M : parameters) : ModSym -> Rng, Map
- HeckeEigenvectors(M) : ModBrdt -> [ ModBrdt ]
- HeckeLift(chi) : GrpDrchNFElt -> GrpHeckeElt, GrpHecke
- HeckeOperator(A, n) : ModAbVar, RngIntElt -> MapModAbVar
- HeckeOperator(M, n) : ModBrdt, RngIntElt -> AlgMatElt
- HeckeOperator(M, n) : ModFrm, RngIntElt -> AlgMatElt
- HeckeOperator(M, P) : ModFrmBianchi, RngOrdIdl -> Mtrx
- HeckeOperator(M, P) : ModFrmHil, RngOrdIdl -> Mtrx
- HeckeOperator(M, n) : ModSS, RngIntElt -> AlgMatElt
- HeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
- HeckeOperator(n,f) : RngIntElt, ModFrmElt -> ModFrmElt
- HeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
- HeckePolynomial(M, n) : ModSym, RngIntElt -> RngUPolResElt
- HeckePolynomial(M, n : parameters) : ModFrm, RngIntElt -> RngUPolElt
- IntegralHeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
- IsHeckeAlgebra(H) : HomModAbVar -> BoolElt
- IsHeckeOperator(phi) : MapModAbVar -> BoolElt, RngIntElt
- MinimalHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
- OverconvergentHeckeSeries(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngUPolElt
- OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- SetHeckeBound(M, n) : ModSym, RngIntElt -> RngIntElt
- TestHeckeRep(W,r) : GrpFPCox, SeqEnum -> .
- WG2HeckeRep(W,wg) : GrpFPCox, GrphUnd -> SeqEnum
V2.28, 13 July 2023