- group-action
- group-actions
- group-algebra
- group-Boolean
- group-boolean
- group-braid
- group-code-design
- group-cohomology
- group-elt-op
- group-op
- group-order
- group-overview
- group-prop
- group-properties
- group-props
- group-recognition
- group-simple
- group-theory
- group-wgraphs
- Group4
- Group4P
- group_points
- GroupActions
- GroupAlgebra
- GroupAlgebraAsStarAlgebra
- GroupAlgebraAsStarAlgebra2
- GroupComputation
- GroupConstructors
- GroupData
- GroupIdeal
- GroupName
- groupname
- GroupOfLieType
- GroupOfLieType(L) : AlgLie -> GrpLie
- GroupOfLieType(C, k) : AlgMatElt, Rng -> GrpLie
- GroupOfLieType(W, k) : GrpMat, Rng -> GrpLie
- GroupOfLieType(W, k) : GrpPermCox, Rng -> GrpLie
- GroupOfLieType(W, R) : GrpPermCox, Rng -> GrpLie
- GroupOfLieType(W, q) : GrpPermCox, RngIntElt -> GrpLie
- GroupOfLieType(N, k) : MonStgElt, Rng -> GrpLie
- GroupOfLieType(N, q) : MonStgElt, RngIntElt -> GrpLie
- GroupOfLieType(C, k) : Mtrx, Rng -> GrpLie
- GroupOfLieType(C, q) : Mtrx, RngIntElt -> GrpLie
- GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
- GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
- GroupOfLieType(R, q) : RootDtm, RngIntElt -> GrpLie
- GroupOfLieTypeFactoredOrder
- GroupOfLieTypeHomomorphism
- GroupOfLieTypeOrder
- GroupOrders
- Groups
- NumberOfGroups(D) : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- # D : DB -> RngIntElt
- AdmissableTriangleGroups() : -> SeqEnum
- GeneratepGroups (p, d, c : parameters) : RngIntElt, RngIntElt,RngIntElt -> [GrpPC], RngIntElt
- IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
- IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
- IsolGroupsSatisfying(f) : Any -> SeqEnum
- NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, o) : DB, RngIntElt -> RngIntElt
- NumberOfGroups(D, o1, o2): DB, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
- NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
- NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
- NumberOfSimpleGroups() : -> RngIntElt
- NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
- NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt
- PicardToClassGroupsMap(X) : TorVar -> Map
- PrimitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
- PrimitiveGroups(d, f: parameters) : RngIntElt, Program -> [GrpPerm]
- PrimitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
- QuasisimpleMatrixGroups(): -> SeqEnum
- SmallGroups(o: parameters) : RngIntElt -> [* Grp *]
- SmallGroups(o, f: parameters) : RngIntElt, Program -> [* Grp *]
- SmallGroups(S: parameters) : [RngIntElt] -> [* Grp *]
- SmallGroups(S, f: parameters) : [RngIntElt], Program -> [* Grp *]
- ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
- TransitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
- TransitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
- TransitiveGroups(d, f) : RngIntElt, Program -> [GrpPerm]
- TransitiveGroups(S, f) : [RngIntElt], Program -> [GrpPerm]
- TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
- WeilToClassGroupsMap(C) : RngCox -> Map
V2.28, 13 July 2023