- curve
- curve-base-change
- curve-differentials
- curve-hessian
- curve-iscusp
- curve-sing
- curve_desing
- curve_from_invariants
- CurveDifferential
- CurveDivisor
- CurveFromInvts
- curvepl
- CurvePlace
- CurveQuotient
- Curves
- NumberOfCurves(D) : DB -> RngIntElt
- # D : DB -> RngIntElt
- Curves(B) : GRBskt -> SeqEnum
- EffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum
- EllipticCurves(D) : DB -> [ CrvEll ]
- EllipticCurves(D, S) : DB, MonStgElt -> [ CrvEll ]
- EllipticCurves(D, N) : DB, RngIntElt -> [ CrvEll ]
- EllipticCurves(D, N, I) : DB, RngIntElt, RngIntElt -> [ CrvEll ]
- HilbertIrreducibilityCurves(f) : RngUPolElt -> SetEnum, SeqEnum
- IneffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum
- IsIsomorphicHyperellipticCurves(X1, X2) : CrvHyp, CrvHyp -> BoolElt, List
- IsReducedIsomorphicHyperellipticCurves(X1, X2) : CrvHyp , CrvHyp -> BoolElt, List
- IsogenousCurves(E) : CrvEll[FldRat] -> SeqEnum, RngIntElt
- IsomorphismsOfHyperellipticCurves(X1, X2) : CrvHyp, CrvHyp -> List
- NewModularHyperellipticCurves(N, g) : RngIntElt, RngIntElt -> SeqEnum
- NewModularNonHyperellipticCurvesGenus3(N) : RngIntElt -> SeqEnum
- NumberOfCurves(D, N) : DB, RngIntElt -> RngIntElt
- NumberOfCurves(D, N, i) : DB, RngIntElt, RngIntElt -> RngIntElt
- ReducedIsomorphismsOfHyperellipticCurves(X1, X2) : CrvHyp , CrvHyp -> List
- curves
- curves-attributes
- curves-base-change
- curves-creation
- curves-in-space
- curves-invariants
- Cusp
- BianchiCuspForms(F, N) : FldNum, RngOrdIdl -> ModFrmBianchi
- Cusp(CN,N,d) : Crv, RngIntElt, RngIntElt -> Any
- CuspForms(x) : Any -> ModFrm
- CuspIsSingular(N,d) : RngIntElt, RngIntElt -> BoolElt
- CuspPlaces(CN,N,d) : Crv, RngIntElt, RngIntElt -> SeqEnum[PlcCrvElt]
- CuspWidth(G,x) : GrpPSL2, SetCspElt -> RngIntElt
- DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt
- DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
- DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
- DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
- DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
- HilbertCuspForms(F, N, k) : FldNum, RngOrdIdl, SeqEnum -> ModFrmHil
- IsCusp(p) : Pt -> BoolElt
- IsCusp(z) : SpcHypElt -> BoolElt
V2.28, 13 July 2023