- CommonComplement
- CommonComponent
- CommonEigenspaces
- CommonModularStructure
- CommonOverfield
- CommonZeros
- Commutative
- Commutator
- Commutator(g, h) : GrpLieElt, GrpLieElt -> GrpLieElt
- (g, h) : GrpLieElt, GrpLieElt -> GrpLieElt
- CommutatorGraph(L) : AlgLieExtr -> GrphUnd
- CommutatorIdeal(A, B) : AlgAss, AlgAss -> AlgAss
- CommutatorIdeal(S) : AlgQuatOrd -> AlgQuatOrdIdl
- CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng
- CommutatorSubgroup(G) : GrpAb -> GrpAb
- CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
- CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
- CommutatorSubgroup(G) : GrpFP -> GrpFP
- CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
- CommutatorSubgroup(G) : GrpMat -> GrpMat
- CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
- CommutatorSubgroup(G) : GrpPC -> GrpPC
- CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
- CommutatorSubgroup(G) : GrpPerm -> GrpPerm
- CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
- CommutatorTensor(A) : Alg -> TenSpcElt, Map
- CommutatorFromAlgebra
- CommutatorGraph
- CommutatorIdeal
- CommutatorModule
- CommutatorSubgroup
- DerivedSubgroup(G) : GrpAb -> GrpAb
- DerivedGroup(G) : GrpAb -> GrpAb
- CommutatorSubgroup(G) : GrpAb -> GrpAb
- CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
- CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
- CommutatorSubgroup(G) : GrpFP -> GrpFP
- CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
- CommutatorSubgroup(G) : GrpMat -> GrpMat
- CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
- CommutatorSubgroup(G) : GrpPC -> GrpPC
- CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
- CommutatorSubgroup(G) : GrpPerm -> GrpPerm
- CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
- CommutatorTensor
- Comp
- comp
- comp<K|P> : FldAlg, RngOrdIdl -> FldLoc, Map
- Completion(K, P) : FldAlg, RngOrdIdl -> FldLoc, Map
- Completion(K, P) : FldNum, RngOrdIdl -> FldLoc, Map
- comp< R | a1, ..., ar > : Rng, RngElt, ..., RngElt -> Rng, Map
- Compact
- AllCompactChainMaps(PR) : Rec -> Rec
- CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
- CompactInjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
- CompactPart(P) : TorPol -> TorPol
- CompactPresentation(G) : GrpPC -> [RngIntElt]
- CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
- CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
- CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
- IsCompactHyperbolic(W) : GrpFPCox -> BoolElt
- IsCoxeterHyperbolic(M) : AlgMatElt -> BoolElt
- IsCoxeterHyperbolic(G) : GrphUnd -> BoolElt
- SetAutoCompact(b) : BoolElt ->
- compact
- compact-presentation
- CompactInjectiveResolution
- CompactPart
- CompactPresentation
- CompactProjectiveResolution
- CompactProjectiveResolutionPGroup
- CompactProjectiveResolutionsOfSimpleModules
V2.28, 13 July 2023