- Cohomology Group
- Cohomology-2
- cohomology-extensions
- cohomology-generators
- cohomology-groups
- cohomology-relations
- CohomologyClass
- CohomologyDimension
- CohomologyElementToChainMap
- CohomologyElementToCompactChainMap
- CohomologyGeneratorToChainMap
- CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
- CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
- CohomologyGroup
- CohomologyLeftModuleGenerators
- CohomologyModule
- CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
- CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
- CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
- CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
- CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho
- CohomologyRightModuleGenerators
- CohomologyRing
- CohomologyRingGenerators
- CohomologyRingQuotient
- CohomologyToChainmap
- Cohomotopism
- CohomotopismCategory
- Coisogeny
- CoisogenyGroup
- Cokernel
- BurnsideCokernel(G) : Grp -> GrpAb, UserProgram, SeqEnum[AlgChtrElt]
- Cokernel(f) : MapChn -> ModCpx, MapChn
- Cokernel(phi) : MapModAbVar -> ModAbVar, MapModAbVar
- Cokernel(phi) : MapModAbVar -> ModAbVar, MapModAbVar
- Cokernel(f) : ModMatFldElt -> ModAlg,ModMatFldElt
- Cokernel(a) : ModMatRngElt -> ModTupFld, Map
- Cokernel(a) : ModMatRngElt -> ModTupRng
- Cokernel(f) : ModMPolHom -> ModMPol
- Cokernel(f) : ShfHom -> ShfCoh, ShfHom
- IsCokernelTorsionFree(f) : TorLatMap -> BoolElt
- UniversalPropertyOfCokernel(pi, f) : MapModAbVar, MapModAbVar -> MapModAbVar
- Collatz
- Collect
- CollectRelations
- Collinear
- CollinearPointsOnPlane
- Collineation
- CentralCollineationGroup(P, l) : Plane, PlaneLn -> GrpPerm, PowMap, Map
- CentralCollineationGroup(P, p) : Plane, PlanePt -> GrpPerm, PowMap, Map
- CentralCollineationGroup(P, p, l) : Plane, PlanePt, PlaneLn -> GrpPerm, PowMap, Map
- CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- CollineationGroupStabilizer(P, k) : Plane, RngIntElt -> GrpPerm, GSet, GSet, PowMap, Map
- CollineationSubgroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- IsCentralCollineation(P, g) : Plane, GrpPermElt -> BoolElt, PlanePt, PlaneLn
- Plane_Collineation (Example H150E13)
- collineation
- collineation-group
- CollineationGroup
- AutomorphismGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- PointGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- CollineationGroupStabilizer
- CollineationGSet
- CollineationSubgroup
- Colon
- Colon(J, I): AlgAssVOrdIdl[RngOrd], AlgAssVOrdIdl[RngOrd] -> PMat
- ColonIdeal(M, N) : ModMPol, ModMPol -> RngMPol
- ColonIdeal(I, J) : RngMPol, RngMPol -> RngMPol
- ColonIdeal(I, f) : RngMPol, RngMPolElt -> RngMPol, RngIntElt
- ColonIdeal(I, J) : RngOrdFracIdl, RngOrdFracIdl -> RngOrdFracIdl
- ColonIdealEquivalent(I, f) : RngMPol, RngMPolElt -> RngMPol, RngMPolElt
- ColonModule(M, J) : ModMPol, RngMPol -> ModMPol
- IdealQuotient(I, J) : RngFunOrdIdl, RngFunOrdIdl -> RngFunOrdIdl
V2.28, 13 July 2023