Bibliography
- AEVZ02
-
E. Agrell, T. Eriksson, A. Vardy, and K. Zeger.
Closest point search in lattices.
IEEE Transactions on Information Theory, 48(8):2201--2214, 2002.
- Ajt98
-
Miklós Ajtai.
The Shortest Vector Problem in L2 is NP-hard for Randomized Reductions (Extended Abstract).
In Proceedings of the 30th Symposium on the Theory of Computing (STOC 1998), pages 10--19. ACM, 1998.
- Akh02
-
Ali Akhavi.
Random lattices, threshold phenomena and efficient reduction algorithms.
Theoretical Computer Science, 287(2):359--385, 2002.
- dW87
-
Benne M.M. de Weger.
Solving exponential Diophantine equations using lattice basis reduction algorithms.
J. Number Th., 26:325--367, 1987.
- FP83
-
U. Fincke and M. Pohst.
A procedure for determining algebraic integers of given norm.
In EUROCAL, volume 162 of LNCS, pages 194--202. Springer, 1983.
- HPP06
-
F. Hess, S. Pauli, and M. Pohst, editors.
ANTS VII, volume 4076 of LNCS. Springer-Verlag, 2006.
- HS07
-
Guillaume Hanrot and Damien Stehlé.
Improved Analysis of Kannan's Shortest Lattice Vector Algorithm (Extended Abstract).
In Advances in cryptology---CRYPTO 2007, volume 4622 of LNCS, pages 170--186. Springer, 2007.
- JC98
-
N.J.A. Sloane J.H. Conway.
Sphere Packings, Lattices and Groups, volume 290 of Grundlehren der Mathematischen Wissenschaften.
Springer, New York--Berlin--Heidelberg, 3rd edition, 1998.
- Kan83
-
R. Kannan.
Improved algorithms for integer programming and related lattice problems.
In Proceedings of the 15th Symposium on the Theory of Computing (STOC 1983), pages 99--108. ACM, 1983.
- Kne57
-
M. Kneser.
Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen.
Archiv Math., 8:241--250, 1957.
- LLL82
-
Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász.
Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515--534, 1982.
- MG02
-
Daniele Micciancio and Shafi Goldwasser.
Complexity of lattice problems: a cryptographic perspective, volume 671 of The Kluwer International Series in Engineering and
Computer Science.
Kluwer Academic Publishers, 2002.
- NS01a
-
G. Nebe and N.J.A. Sloane.
The Catalogue of Lattices.
http://www.research.att.com/~njas/lattices/, 2001.
- NS01b
-
Gabriele Nebe and Neil J.A. Sloane.
A Catalogue of Lattices.
http://akpublic.research.att.com/~njas/lattices/index.html,
2001.
- NS06
-
Phong Nguyen and Damien Stehlé.
LLL on the Average.
In Hess et al. [HPP06], pages 238--256.
- NS09
-
Phong Nguyen and Damien Stehlé.
An LLL Algorithm with Quadratic Complexity.
SIAM Journal on Computing, 39(3):874--903, 2009.
- Pau98
-
Sachar Paulus.
Lattice Basis Reduction in Function Fields.
In In ANTS-3 : Algorithmic, pages 567--575. Springer-Verlag, 1998.
- Poh87
-
Michael Pohst.
A Modification of the LLL Reduction Algorithm.
J. Symbolic Comp., 4(1):123--127, 1987.
- Pro
-
The SPACES Project.
MPFR, a LGPL-library for multiple-precision floating-point computations with exact rounding.
http://www.mpfr.org/.
- PS08
-
Xavier Pujol and Damien Stehlé.
Rigorous and efficient short lattice vectors enumeration.
In Advances in Cryptology---AsiaCrypt 2008, LNCS. Springer, 2008.
- SE94
-
Claus-Peter Schnorr and Michael Euchner.
Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems.
Mathematics of Programming, 66:181--199, 1994.
- SH95
-
Claus-Peter Schnorr and Horst Helmut Hörner.
Attacking the Chor-Rivest Cryptosystem by Improved Lattice Reduction.
In Advances in Cryptology---EuroCrypt 1995, volume 921 of LNCS, pages 1--12. Springer-Verlag, 1995.
- Sho
-
Victor Shoup.
NTL, Number Theory C++ Library.
http://www.shoup.net/ntl/.
- Sim05
-
Denis Simon.
Solving quadratic equations using reduced unimodular quadratic forms.
Math. Comp., 74(251):1531--1543 (electronic), 2005.
- SP91
-
Rainer Schulze-Pillot.
An algorithm for computing genera of ternary and quaternary quadratic forms.
In Stephen M. Watt, editor, Proceedings ISSAC'91, pages 134--143, Bonn, 1991.
- Ste09
-
Damien Stehlé.
Floating-point LLL: theoretical and practical aspects.
Springer-Verlag, 2009.
To appear.
- vEB81
-
Peter van Emde Boas.
Another NP-complete partition problem and the complexity of computing short vectors in a lattice.
Technical report 81-04, Mathematisch Instituut, Universiteit van Amsterdam, 1981.
V2.28, 13 July 2023