- reference
- reference-argument
- ReferenceDivisor
- Refine
- Refined
- RefineSection
- refl
- Reflection
- ComplexReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat, Map
- ComplexReflectionGroup(C) : Mtrx -> GrpMat, Map
- IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
- IsPseudoReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
- IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []
- IsReflection(w) : GrpFPElt -> BoolElt
- IsReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
- IsReflectionGroup(G) : GrpMat -> BoolElt
- IsReflectionGroup(G) : GrpMat -> BoolElt
- IsReflectionSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
- OrthogonalReflection(a) : ModTupFldElt -> AlgMatElt
- OrthogonalReflection(a) : ModTupFldElt -> AlgMatElt
- PseudoReflection(a, b) : ModTupRngElt, ModTupRngElt -> AlgMatElt
- PseudoReflectionGroup(A, B) : Mtrx, Mtrx -> GrpMat, Map
- Reflection(G, r) : GrpLie, RngIntElt -> GrpLieElt
- Reflection(W, r) : GrpPermCox, RngIntElt -> GrpPermElt
- Reflection(a, b) : ModTupRngElt, ModTupRngElt -> AlgMatElt
- ReflectionFactors(V, f) : ModTupFld, Mtrx -> SeqEnum
- ReflectionGroup(M) : AlgMatElt -> GrpMat
- ReflectionGroup(M) : AlgMatElt -> GrpMat
- ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
- ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
- ReflectionGroup(N) : MonStgElt -> GrpMat
- ReflectionGroup(R) : RootDtm -> GrpMat
- ReflectionGroup(R) : RootSys -> GrpMat
- ReflectionGroup(R) : RootSys -> GrpMat
- ReflectionMatrices(W) : GrpMat -> [AlgMatElt]
- ReflectionMatrices(W) : GrpPermCox -> []
- ReflectionMatrices(R) : RootDtm -> []
- ReflectionMatrices(R) : RootSys -> []
- ReflectionMatrix(W, r) : GrpMat, RngIntElt -> AlgMatElt
- ReflectionMatrix(W, r) : GrpPermCox, RngIntElt -> []
- ReflectionMatrix(R, r) : RootDtm, RngIntElt -> []
- ReflectionMatrix(R, r) : RootSys, RngIntElt -> []
- ReflectionPermutation(W, r) : GrpMat, RngIntElt -> []
- ReflectionPermutation(R, r) : RootDtm, RngIntElt -> []
- ReflectionPermutation(R, r) : RootSys, RngIntElt -> []
- ReflectionPermutations(W) : GrpMat -> []
- ReflectionPermutations(R) : RootDtm -> []
- ReflectionPermutations(R) : RootSys -> []
- ReflectionSubgroup(W, a) : GrpPermCox, () -> GrpPermCox
- ReflectionSubgroup(W, s) : GrpPermCox, [] -> GrpPermCox
- ReflectionWord(W, r) : GrpMat, RngIntElt -> []
- ReflectionWord(W, r) : GrpPermCox, RngIntElt -> []
- ReflectionWord(R, r) : RootDtm, RngIntElt -> []
- ReflectionWord(R, r) : RootSys, RngIntElt -> []
- ReflectionWords(W) : GrpMat -> []
- ReflectionWords(W) : GrpPermCox -> []
- ReflectionWords(R) : RootDtm -> []
- ReflectionWords(R) : RootSys -> []
- ShephardTodd(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld
- SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
- SimpleReflectionMatrices(W) : GrpPermCox -> []
- SimpleReflectionMatrices(R) : RootDtm -> []
- SimpleReflectionMatrices(R) : RootSys -> []
- SimpleReflectionPermutations(W) : GrpMat -> []
- SimpleReflectionPermutations(W) : GrpPermCox -> [GrpPermElt]
- SimpleReflectionPermutations(R) : RootDtm -> []
- SimpleReflectionPermutations(R) : RootSys -> []
- UnitaryReflection(a, zeta) : ModTupRngElt, FldElt -> AlgMatElt
V2.28, 13 July 2023