- PrimaryIdeal
- PrimaryInvariantFactors
- PrimaryInvariants
- PrimaryRationalForm
- Prime
- BadPrimeData(L) : LSer -> SeqEnum
- ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
- CohenMacaulayTypeAtPrime(S, P) : AlgEtQOrd, AlgEtQIdl->RngIntElt
- ComputePrimeFactorisation(~D) : DivSchElt ->
- DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]
- GetSplitPrimeWithSquare(G) : GrpRed -> RngIntElt
- IsBassAtPrime(S, P) : AlgEtQOrd, AlgEtQIdl -> BoolElt
- IsFactorisationPrime(D) : DivSchElt -> BoolElt
- IsGorensteinAtPrime(S, P) : AlgEtQOrd, AlgEtQIdl -> BoolElt
- IsMaximalAtPrime(R, P) : AlgEtQOrd, AlgEtQIdl -> BoolElt
- IsPrime(I) : AlgEtQIdl -> BoolElt
- IsPrime(D) : DivSchElt -> BoolElt
- IsPrime(I) : OMIdl -> BoolElt
- IsPrime(I) : OMIdl -> BoolElt
- IsPrime(x) : RngElt -> BoolElt
- IsPrime(I) : RngFunOrdIdl -> BoolElt
- IsPrime(n) : RngIntElt -> BoolElt
- IsPrime(n) : RngIntElt -> BoolElt
- IsPrime(I) : RngMPol -> BoolElt
- IsPrime(I) : RngMPolRes -> BoolElt
- IsPrime(I) : RngOrdIdl -> BoolElt, RngOrdIdl
- IsPrimeField(F) : Fld -> BoolElt
- IsPrimePower(n) : RngIntElt -> BoolElt, RngIntElt, RngIntElt
- IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
- MinimalOverOrdersAtPrime(R, P) : AlgEtQOrd, AlgEtQIdl -> SetIndx[AlgEtQOrd]
- NegativePrimeDivisors(D) : DivSchElt -> SeqEnum
- NextPrime(n) : RngIntElt -> RngIntElt
- NthPrime(n) : RngIntElt -> RngIntElt
- NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
- OverOrdersAtPrime(R, P) : AlgEtQOrd, AlgEtQIdl -> SeqEnum[AlgEtQOrd]
- PlacesAboveRationalPrime(E, p) : AlgEtQ, RngIntElt -> SeqEnum[AlgEtQIdl]
- PreviousPrime(n) : RngIntElt -> RngIntElt
- Prime(L) : FldXPad -> RngIntElt
- Prime(M) : ModSS -> RngIntElt
- Prime(L) : RngLocA -> RngElt
- Prime(L) : RngPad -> RngIntElt
- Prime(G) : SymGenLoc -> RngIntElt
- PrimeBasis(n) : RngIntElt -> [RngIntElt]
- PrimeBasis(n) : RngIntElt -> [RngIntElt]
- PrimeComponents(X) : Sch -> SeqEnum
- PrimeField(A) : AlgEtQ -> FldNum
- PrimeField(F) : Fld -> Fld
- PrimeField(F) : FldFin -> FldFin
- PrimeField(N) : Nfd -> FldFin
- PrimeForm(Q, p) : QuadBin, RngIntElt -> QuadBinElt
- PrimeIdeal(S, p) : AlgQuatOrd, RngElt -> AlgQuatOrdIdl
- PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]
- PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
- PrimeRing(F) : FldFun -> Rng
- PrimeRing(R) : Rng -> Rng
- PrimeRing(L) : RngPad -> RngPad
- QuaternaryLatticeOfPrimeDiscriminant(p) : RngIntElt -> Lat
- QuinaryLatticeOfPrimeDiscriminant(p) : RngIntElt -> Lat
- RadicalSignCharacterSinglePrime(G, p) : GrpRed, RngIntElt -> ModRed
- RandomPrime(n: parameter) : RngIntElt -> RngIntElt
- RandomPrime(n: parameter) : RngIntElt -> RngIntElt
- RandomPrime(n, a, b, x: parameter) :RngIntElt, RngIntElt, RngIntElt -> BoolElt, RngIntElt
- RandomPrime(n, a, b, x: parameter) :RngIntElt, RngIntElt, RngIntElt -> BoolElt, RngIntElt
- RandomPrimePolynomial(R, d) : RngUPol, RngIntElt -> RngUPolElt
- prime
- PrimeBasis
- PrimeComponents
- PrimeDivisors
- PrimeFactorisation
V2.29, 28 November 2025