About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (p)
Search
points
Arithmetic of Points (HYPERELLIPTIC CURVES)
CM Points (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Creation of Points on Curves (ALGEBRAIC CURVES)
Cusps and Elliptic Points of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL
2
(R))
Division Points (ELLIPTIC CURVES)
Enumeration of Points (ELLIPTIC CURVES OVER FINITE FIELDS)
Finding Rational Points (ALGEBRAIC CURVES)
Geometric Restrictions: Points (SCHEMES)
Heegner Points (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Isolated Points on Schemes (SCHEMES)
Maps and Points (SCHEMES)
Points (HYPERELLIPTIC CURVES)
Points (HYPERELLIPTIC CURVES)
Points in Polytopes and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
Points of Subgroup Schemes (ELLIPTIC CURVES)
Points of Toric Lattices (CONVEX POLYTOPES AND POLYHEDRA)
Points on the Jacobian (HYPERELLIPTIC CURVES)
Prelude to Points (SCHEMES)
Random Points (HYPERELLIPTIC CURVES)
Rational Points (SCHEMES)
Rational Points and Point Sets (SCHEMES)
Searching For Points (HYPERELLIPTIC CURVES)
The Fixed-point Spaces for a K[G]-Module (MODULES OVER AN ALGEBRA AND GROUP REPRESENTATIONS)
points-at-infinity-on-hypcurves
CrvHyp_points-at-infinity-on-hypcurves (Example H134E9)
points-blocks
Design_points-blocks (Example H156E2)
points-cubic-model
Crv_points-cubic-model (Example H121E40)
points-jac
Points on the Jacobian (HYPERELLIPTIC CURVES)
points-lines
Plane_points-lines (Example H150E2)
points_creation_kummer
Creation of Points (HYPERELLIPTIC CURVES)
points_kummer
RationalPoints(J, P) : JacHyp, SrfKumPt -> SetIndx
Points on the Kummer Surface (HYPERELLIPTIC CURVES)
PointsAtInfinity
PointsAtInfinity(C) : Crv -> SetEnum
PointsAtInfinity(C) : CrvHyp -> SetIndx
PointsAtInfinity(C) : CrvHyp -> SetIndx
PointsAtInfinity(H) : SetPtEll -> @ PtEll @
PointsCubicModel
PointsCubicModel(C, B : parameters) : Crv, RngIntElt -> SeqEnum
PointSearch
PointSearch(S,H : parameters) : Sch[FldRat], RngIntElt -> SeqEnum
PointSet
PointSet(E, m) : CrvEll, Map -> SetPtEll
E(m) : CrvEll, Map -> SetPtEll
E(L) : CrvEll, Rng -> SetPtEll
PointSet(D) : Inc -> IncPtSet
PointSet(P) : Plane -> PlanePtSet
X(L) : Sch,Rng -> SetPt
pointset
Associated Structures (ELLIPTIC CURVES)
Creation of Point Sets (ELLIPTIC CURVES)
Operations on Point Sets (ELLIPTIC CURVES)
Predicates on Point Sets (ELLIPTIC CURVES)
pointset-category
Associated Structures (ELLIPTIC CURVES)
pointset-creation
PointSet(E, m) : CrvEll, Map -> SetPtEll
Creation of Point Sets (ELLIPTIC CURVES)
pointset-predicates
Predicates on Point Sets (ELLIPTIC CURVES)
PointSets
CrvEll_PointSets (Example H128E15)
PointsInGeneralPosition
PointsInGeneralPosition(P2,S) : Prj,SetIndx[Pt] -> BoolElt,SeqEnum,SeqEnum,SeqEnum
PointsKnown
PointsKnown(C) : CrvHyp -> BoolElt
PointsOverDiscriminantPoint
PointsOverDiscriminantPoint(X, k) : RieSrf, RngIntElt -> SeqEnum[RieSrfPt]
PointsOverSplittingField
PointsOverSplittingField(Z) : Clstr -> SetEnum
PointsQI
PointsQI(C, H) : Crv, RngIntElt -> [Pt]
PointsQI(C, B : parameters) : Crv, RngIntElt -> [Pt]
pol
Generic Polarised Varieties (HILBERT SERIES OF POLARISED VARIETIES)
pol-is
Newton_pol-is (Example H55E7)
pol-var
Generic Polarised Varieties (HILBERT SERIES OF POLARISED VARIETIES)
Polar
ComplexToPolar(c) : FldComElt -> FldReElt, FldReElt
IsPolarSpace(V) : ModTupFld -> BoolElt
Polar(P) : TorPol -> TorPol
PolarSpaceType(V) : ModTupFld -> MonStgElt
PolarToComplex(m, a) : FldReElt, FldReElt -> FldComElt
Polarisation
Polarisation(p) : GRPtS -> SeqEnum
Polarisation(f) : MPolElt -> TenSpcElt, MPolElt
TerminalPolarisation(p) : GRPtS -> SeqEnum
Polarised
PolarisedVariety(d,W,n) : RngIntElt,SeqEnum,RngUPolElt-> GRSch
PolarisedVariety
PolarisedVariety(d,W,n) : RngIntElt,SeqEnum,RngUPolElt-> GRSch
Polarization
ModularPolarization(A) : ModAbVar -> MapModAbVar
Polarisation(f) : MPolElt -> TenSpcElt, MPolElt
polarspace
FldForms_polarspace (Example H30E11)
PolarSpaceType
PolarSpaceType(V) : ModTupFld -> MonStgElt
PolarToComplex
PolarToComplex(m, a) : FldReElt, FldReElt -> FldComElt
Pole
PoleDivisor(D) : DivFunElt -> DivFunElt
Denominator(D) : DivFunElt -> DivFunElt
PoleDivisor(a) : FldFunElt -> OMDiv
Contents
Index (p)
Search
V2.28, 13 July 2023