- other-elts
- other-general
- other-global
- other-ideal
- other-operations
- other-properties
- other-quotient
- OtherMod
- Others
- Out
- OutDegree
- Outer
- OuterFaces
- OuterFPGroup
- OuterNormal
- OuterNormals
- OuterOrder
- OuterShape
- OuterVertices
- OutNeighbors
- OutNeighbours
- Output
- output
- Oval
- OvalDerivation
- Over
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
- AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
- AlgebraOverCenter(A) : Alg -> AlgAss, Map;
- AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
- AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
- AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
- DirichletCharacterOverNF(chi) : GrpDrchElt -> GrpDrchNFElt
- FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
- GHomOverCentralizingField(M, N) : ModGrp, ModGrp -> ModMatGrp
- GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
- GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
- HasPointsOverExtension(X) : Sch -> BoolElt
- HasSingularPointsOverExtension(C) : Sch -> BoolElt
- IntegralMatrixOverQ(phi) : MapModAbVar -> ModMatFldElt
- IsIsomorphicOverQt(K, L) : FldFun, FldFun -> BoolElt, Map
- IsOverQ(H) : HomModAbVar -> HomModAbVar
- IsOverSmallerField(G : parameters) : GrpMat -> BoolElt, GrpMat
- IsOverSmallerField(G, k : parameters) : GrpMat -> BoolElt, GrpMat
- IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
- IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp
- LiftDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
- LogCanonicalThresholdOverExtension(C) : Sch -> FldRatElt
- ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
- ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
- ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
- NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
- NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
- NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
- OverDimension(V) : ModTupFld -> RngIntElt
- OverDimension(u) : ModTupFldElt -> RngIntElt
- OverDimension(M) : ModTupRng -> RngIntElt
- OverDimension(u) : ModTupRngElt -> RngIntElt
- PointsOverDiscriminantPoint(X, k) : RieSrf, RngIntElt -> SeqEnum[RieSrfPt]
- PointsOverSplittingField(Z) : Clstr -> SetEnum
- TensorOverCentroid(T) : TenSpcElt -> TenSpcElt, Hmtp
- WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
- WriteGModuleOver(M, K) : ModGrp, FldAlg -> ModGrp
- WriteOverLargerField(G) : GrpMat -> GrpMat, GrpAb, SeqEnum
- WriteOverSmallerField(G, F) : GrpMat, FldFin -> GrpMat, Map
- WriteOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp, Map
V2.28, 13 July 2023