About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (n)
Search
NumberOfPartitions
NumberOfPartitions(n) : RngIntElt -> RngIntElt
NumberOfPartitions(n) : RngIntElt -> RngIntElt
NumberOfPCGenerators
Ngens(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(G) : GrpGPC -> RngIntElt
NPCgens(G) : GrpGPC -> RngIntElt
NPCGenerators(G) : GrpGPC -> RngIntElt
NumberOfGenerators(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
NumberOfPCGenerators(P) : GrpPCpQuotientProc -> RngIntElt
NumberOfPermutations
NumberOfPermutations(n, k) : RngIntElt, RngIntElt -> RngIntElt
NumberOfPlacesDegECF
NumberOfPlacesDegECF(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOne
NumberOfPlacesOfDegreeOne(m, U) : DivFunElt, GrpAb -> RngIntElt
NumberOfPlacesOfDegreeOne(A) : FldFunAb -> RngIntElt
NumberOfPlacesOfDegreeOneECF
NumberOfPlacesOfDegreeOneECF(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField
NumberOfPlacesOfDegreeOneECF(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField
NumberOfPlacesDegECF(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPoints
# P : IncPtSet -> RngIntElt
NumberOfPoints(D) : Inc -> RngInt
NumberOfPoints(P) : Plane -> RngIntElt
NumberOfPoints(P) : TorPol -> RngIntElt
NumberOfPointsAtInfinity
NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
NumberOfPointsOnCubicSurface
NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
NumberOfPointsOnMinimalResolutionFibre
NumberOfPointsOnMinimalResolutionFibre(dsd) : DesingData -> RngIntElt
NumberOfPointsOnResolutionFibre
NumberOfPointsOnResolutionFibre(dsd) : DesingData -> RngIntElt
NumberOfPointsOnSurface
NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
NumberOfPositiveRoots
NumPosRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
NumberOfPositiveRoots(N) : MonStgElt -> .
NumberOfPositiveRoots(R) : RootStr -> RngIntElt
NumberOfPositiveRoots(R) : RootSys -> RngIntElt
NumberOfPrimePolynomials
NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveSolubleGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfProjectives
NumberOfProjectives(B) : AlgBas -> RngIntElt
NumberOfPunctures
NumberOfPunctures(C): CrvPln -> RngIntElt
NumberOfQubits
Nqubits(H) : HilbSpc -> RngIntElt
NumberOfQubits(H) : HilbSpc -> RngIntElt
NumberOfQuotientGradings
NumberOfQuotientGradings(C) : RngCox -> RngIntElt
NumberOfQuotientGradings(X) : TorVar -> RngIntElt
NumberOfRationalPoints
NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
NumberOfRelations
Nrels(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(G) : GrpRWS -> RngIntElt
NumberOfRelations(M) : MonRWS -> RngIntElt
NumberOfRelationsRequired
NumberOfRelationsRequired(P) : NFSProc -> RngIntElt
NumberOfRepresentations
NumberOfRepresentations(D, i): DB, RngIntElt -> RngIntElt
NumberOfResults
Nresults() : -> RngIntElt, [ BoolElt ]
NumberOfResults() : -> RngIntElt, [ BoolElt ]
NumberOfRows
Nrows(a) : AlgMatElt -> RngIntElt
NumberOfRows(a) : AlgMatElt -> RngIntElt
NumberOfRows(u) : ModTupFldElt -> RngIntElt
NumberOfRows(A) : Mtrx -> RngIntElt
NumberOfRows(A) : MtrxSprs -> RngIntElt
NumberOfRows(t) : Tbl -> RngIntElt
NumberOfSimpleGroups
NumberOfSimpleGroups() : -> RngIntElt
NumberOfSkewRows
NumberOfSkewRows(t) : Tbl -> RngIntElt
NumberOfSmallGroups
NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
NumberOfSmoothDivisors
NumberOfSmoothDivisors(n, m, P) : RngIntElt, RngIntElt, SeqEnum[RngElt] -> RngElt
Contents
Index (n)
Search
V2.28, 13 July 2023