About
Calculator
Ordering
FAQ
Download
Download Magma
Databases
User Contributions
Documentation
Handbook
Overview
Release Notes
Discovering Maths with Magma
First Steps in Magma (pdf)
Solving Problems with Magma (pdf)
Acknowledgements
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (n)
Search
NumberOfPartitions
NumberOfPartitions(n) : RngIntElt -> RngIntElt
NumberOfPartitions(n) : RngIntElt -> RngIntElt
NumberOfPCGenerators
Ngens(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(G) : GrpGPC -> RngIntElt
NPCgens(G) : GrpGPC -> RngIntElt
NPCGenerators(G) : GrpGPC -> RngIntElt
NumberOfGenerators(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
NumberOfPCGenerators(P) : GrpPCpQuotientProc -> RngIntElt
NumberOfPermutations
NumberOfPermutations(n, k) : RngIntElt, RngIntElt -> RngIntElt
NumberOfPlacesDegECF
NumberOfPlacesDegECF(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOne
NumberOfPlacesOfDegreeOne(m, U) : DivFunElt, GrpAb -> RngIntElt
NumberOfPlacesOfDegreeOne(A) : FldFunAb -> RngIntElt
NumberOfPlacesOfDegreeOneECF
NumberOfPlacesOfDegreeOneECF(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField
NumberOfPlacesOfDegreeOneECF(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField
NumberOfPlacesDegECF(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPoints
# P : IncPtSet -> RngIntElt
NumberOfPoints(D) : Inc -> RngInt
NumberOfPoints(P) : Plane -> RngIntElt
NumberOfPoints(P) : TorPol -> RngIntElt
NumberOfPointsAtInfinity
NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
NumberOfPointsOnCubicSurface
NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
NumberOfPointsOnMinimalResolutionFibre
NumberOfPointsOnMinimalResolutionFibre(dsd) : DesingData -> RngIntElt
NumberOfPointsOnResolutionFibre
NumberOfPointsOnResolutionFibre(dsd) : DesingData -> RngIntElt
NumberOfPointsOnSurface
NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
NumberOfPositiveRoots
NumPosRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
NumberOfPositiveRoots(N) : MonStgElt -> .
NumberOfPositiveRoots(R) : RootStr -> RngIntElt
NumberOfPositiveRoots(R) : RootSys -> RngIntElt
NumberOfPrimePolynomials
NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveSolubleGroups
NumberOfPrimitiveSolubleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAffineGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveDiagonalGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveProductGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveAlmostSimpleGroups(d) : RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfProjectives
NumberOfProjectives(B) : AlgBas -> RngIntElt
NumberOfPunctures
NumberOfPunctures(C): CrvPln -> RngIntElt
NumberOfQubits
Nqubits(H) : HilbSpc -> RngIntElt
NumberOfQubits(H) : HilbSpc -> RngIntElt
NumberOfQuotientGradings
NumberOfQuotientGradings(C) : RngCox -> RngIntElt
NumberOfQuotientGradings(X) : TorVar -> RngIntElt
NumberOfRationalPoints
NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
NumberOfRelations
Nrels(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(G) : GrpRWS -> RngIntElt
NumberOfRelations(M) : MonRWS -> RngIntElt
NumberOfRelationsRequired
NumberOfRelationsRequired(P) : NFSProc -> RngIntElt
NumberOfRepresentations
NumberOfRepresentations(D, i): DB, RngIntElt -> RngIntElt
NumberOfResults
Nresults() : -> RngIntElt, [ BoolElt ]
NumberOfResults() : -> RngIntElt, [ BoolElt ]
NumberOfRows
Nrows(a) : AlgMatElt -> RngIntElt
NumberOfRows(a) : AlgMatElt -> RngIntElt
NumberOfRows(u) : ModTupFldElt -> RngIntElt
NumberOfRows(A) : Mtrx -> RngIntElt
NumberOfRows(A) : MtrxSprs -> RngIntElt
NumberOfRows(t) : Tbl -> RngIntElt
NumberOfSimpleGroups
NumberOfSimpleGroups() : -> RngIntElt
NumberOfSkewRows
NumberOfSkewRows(t) : Tbl -> RngIntElt
NumberOfSmallGroups
NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
NumberOfSmoothDivisors
NumberOfSmoothDivisors(n, m, P) : RngIntElt, RngIntElt, SeqEnum[RngElt] -> RngElt
Contents
Index (n)
Search
V2.28, 28 February 2025