- ModularPolarization
- ModularSolution
- ModularSymbols
- ModularSymbols(E) : CrvEll -> ModSym
- ModularSymbols(eps, k) : GrpDrchElt, RngIntElt -> ModSym
- ModularSymbols(eps, k, sign) : GrpDrchElt, RngIntElt, RngIntElt -> ModSym
- ModularSymbols(A) : ModAbVar -> SeqEnum
- ModularSymbols(H) : ModAbVarHomol -> SeqEnum
- ModularSymbols(M) : ModFrm -> SeqEnum
- ModularSymbols(M, sign) : ModFrm, RngIntElt -> ModSym
- ModularSymbols(M, N') : ModSym, RngIntElt -> ModSym
- ModularSymbols(s, sign) : MonStgElt, RngIntElt -> ModSym
- ModularSymbols(M : parameters) : ModSS -> ModSym
- ModularSymbols(M, sign : parameters) : ModSS, RngIntElt -> ModSym
- ModularSymbols(N) : RngIntElt -> ModSym
- ModularSymbols(N, k) : RngIntElt, RngIntElt -> ModSym
- ModularSymbols(N, k, F) : RngIntElt, RngIntElt, Fld -> ModSym
- ModularSymbols(N, k, F, sign) : RngIntElt, RngIntElt, Fld, RngIntElt -> ModSym
- ModularSymbols(N, k, sign) : RngIntElt, RngIntElt, RngIntElt -> ModSym
- ModFrm_ModularSymbols (Example H141E22)
- ModularSymbolToIntegralHomology
- ModularSymbolToRationalHomology
- Module
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
- AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
- AbsolutelyIrreducibleModule(M) : ModRng -> ModRng
- AmbientModule(M) : ModBrdt -> ModBrdt
- AnalyticDrinfeldModule(F, p) : FldFun, PlcFunElt -> RngUPolTwstElt
- AnalyticModule(x, p) : RngElt, PlcFunElt -> RngElt
- BaseModule(L) : AlgMatLie -> ModTupRng
- BaseModule(M) : AlgMatLie -> ModTupRng
- BaseModule(R) : AlgMatV -> ModTup
- BrandtModule(A) : AlgQuatOrd -> ModBrdt
- BrandtModule(M, N) : AlgQuatOrd, RngElt -> ModBrdt
- BrandtModule(M) : ModSS -> ModBrdt
- BrandtModule(D) : RngIntElt -> ModBrdt
- BrandtModuleDimension(D, N) : RngElt, RngElt -> RngIntElt
- BrandtModuleDimension(D, N) : RngIntElt, RngIntElt -> RngIntElt
- CarlitzModule(R, x) : RngUPolTwst, RngUPolElt -> RngUPolTwstElt
- CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
- CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
- CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
- CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
- CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
- CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho
- CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
- ColonModule(M, J) : ModMPol, RngMPol -> ModMPol
- CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng
- ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
- FullModule(S) : ShfCoh -> ModMPol
- GradedModule(R, k) : Rng, RngIntElt -> ModMPol
- GradedModule(R, W) : Rng, [ RngIntElt ] -> ModMPol
- GradedModule(I) : RngMPol -> ModMPol
- HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
- HighestWeightModule(L, w) : AlgLie, SeqEnum -> ModTupAlg
- HighestWeightModule(U, w) : AlgQUE, SeqEnum -> ModTupAlg
- HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
- HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
- HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
- HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
- HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
- InjectiveModule(B, i) : AlgBas, RngIntElt -> ModAlg
- InjectiveSyzygyModule(M, n) : ModAlg, RngIntElt -> ModAlg
- IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
- IsLeftModule(M): ModAlg -> BoolElt
- IsModuleHomomorphism(f) : ModMatFldElt -> BoolElt
- IsModuleHomomorphism(X) : ModMatFldElt -> BoolElt
- IsPermutationModule(M) : ModRng -> BoolElt
- IsRightModule(M): ModAlg -> BoolElt
- LeftOppositeModule(B): LRModGrp -> ModGrp
- MinimalSyzygyModule(M) : ModMPol -> [ ModMPolElt ]
- Module(A, m): Alg, Map[SetCart, ModRng] -> ModAlg
- Module(O) : AlgAssVOrd[RngOrd] -> PMat
- Module(A) : AlgGen -> ModTupRng
- Module(S) : AlgGrpSub -> ModTupRng, Map
- Module(L) : AlgLie -> ModTupRng
- Module(L) : LatNF -> ModDed
- Module(CM) : ModCoho -> ModGrp
- Module(X) : PMat -> ModDed
- Module(R) : RngInvar -> ModMPol, Map
- Module(O) : RngOrd -> ModDed, Map
- Module(O, n) : RngOrd, RngIntElt -> ModDed
- Module(I) : RngOrdFracIdl -> ModDed, Map
- Module(I) : RngOrdFracIdl -> ModDed, Map
- Module(L, R) : SeqEnum[ DiffFunElt ], Rng -> Mod, Map, SeqEnum[ ModElt ]
- Module(L, R) : SeqEnum[ FldFunGElt ], Rng -> Mod, Map, SeqEnum[ ModElt ]
- Module(S) : SeqEnum[ModElt] -> ModDed, Map
- Module(S) : SeqEnum[RngOrdFracIdl] -> ModDed
- Module(S) : SeqEnum[Tup] -> ModDed, Map
- Module(S) : ShfCoh -> ModMPol
- Module(e) : SubModLatElt -> ModRng
- Module(L) : [DiffCrvElt] -> Mod, Map, [ ModElt ]
- Module(S) : [FldFunFracSchElt[Crv]] -> Mod, Map, [ModElt]
- ModuleHomomorphism(f) : ShfHom -> ModMPolHom
- ModuleMap(f, n) : MapChn, RngIntElt -> ModMatRngElt
- ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
- ModuleWithBasis(Q): SeqEnum -> ModAlg
- NormSpace(S) : AlgQuatOrd -> ModTupRng, Map
- PermutationModule(G, K) : Grp, Fld -> ModGrp
- PermutationModule(G, H, K) : Grp, Grp, Fld -> ModGrp
- PermutationModule(G, H, R) : Grp, Grp, Rng -> ModGrp
- PermutationModule(G, V) : Grp, ModTupFld -> ModGrp
- PermutationModule(G, u) : Grp, ModTupFldElt -> ModGrp
- PermutationModule(G, H, R) : GrpFin, GrpFin, Rng -> ModGrpFin
- PermutationModule(G, H, R) : GrpMat, GrpMat, Rng -> ModGrp
- PermutationModule(G, R) : GrpPerm, Rng -> ModGrp
- PermutationModule(G, R) : GrpPerm, Rng -> ModGrpFin
- PhiModule(M) : AlgMatElt -> PhiMod
- PhiModuleElement(x,D) : AlgMatElt, PhiMod -> PhiModElt
- ProjectiveIndecomposableModule(I: parameters) : ModGrp -> ModGrp
- ProjectiveModule(B, i) : AlgBas, RngIntElt -> ModRng
- ProjectiveModule(B, S) : AlgBas, SeqEnum[RngIntElt] -> ModAlg, SeqEnum, SeqEnum
- QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
- QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
- QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
- QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
- QuotientModule(A, S) : AlgFPOld, AlgFPOld -> [AlgMatElt], [ModTupFldElt], [AlgFPEltOld]
- QuotientModule(I) : RngMPol -> ModMPol
- QuotientModuleAction(G, S) : GrpMat -> Map, GrpMat
- QuotientModuleImage(G, S) : GrpMat -> GrpMat
- RelationModule(M) : ModMPol -> [ ModMPol ]
- RightModule(B) LRModGrp: -> ModGrp
- RightRegularModule(B) : AlgBas -> ModAlg
- SubalgebraModule(B, M): Alg, ModAlg -> ModAlg
- SupersingularModule(p,N : parameters) : RngIntElt, RngInt -> ModSS
- SupersingularModule(p) : RngIntElt -> ModForm
- SyzygyModule(M, n) : ModAlg, RngIntElt -> ModAlg
- SyzygyModule(M) : ModMPol -> [ ModMPolElt ]
- SyzygyModule(Q) : [ RngMPolElt ] -> ModTupRng
- TrivialModule(G, K) : Grp, Fld -> ModGrp
- VermaModule(G,w) : GrpLie, SeqEnum -> ModGrp
- ZeroModule(B) : AlgBas -> ModAlg
- RngInvar_Module (Example H117E11)
V2.28, 13 July 2023