About
Calculator
Ordering
FAQ
Download
Download Magma
Databases
User Contributions
Documentation
Handbook
Overview
Release Notes
Discovering Maths with Magma
First Steps in Magma (pdf)
Solving Problems with Magma (pdf)
Acknowledgements
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsSubfield
IsSubfield(F, L) : FldAlg, FldAlg -> BoolElt, Map
IsSubfield(K, L) : FldFun, FldFun -> BoolElt, Map
IsSubfield(F, L) : FldNum, FldNum -> BoolElt, Map
FldFunG_IsSubfield (Example H45E20)
IsSubgraph
IsSubgraph(G, H) : Grph, Grph -> BoolElt
IsSubgraph(G, H) : GrphMultUnd, GrphMultUnd -> BoolElt
IsSubgroup
IsSubgroup(H, K) : GrpFP, GrpFP -> BoolElt
IsSublattice
S subset L : LatNF, LatNF -> BoolElt
IsSublattice(S, L) : LatNF, LatNF -> BoolElt, Mtrx
IsSublattice(L) : TorLat -> BoolElt
IsSubmodule
IsSubmodule(M, N) : ModDed, ModDed -> BoolElt, Map
IsSubnormal
IsSubnormal(G, H) : GrpFin, GrpFin -> BoolElt
IsSubnormal(G, H) : GrpMat, GrpMat -> BoolElt
IsSubnormal(G, H) : GrpPC, GrpPC -> BoolElt
IsSubnormal(G, H) : GrpPerm, GrpPerm -> BoolElt
IsSubscheme
IsSubscheme(C,D) : Sch,Sch -> BoolElt
IsSubscheme(X, Y) : Sch,Sch -> BoolElt
IsSubsequence
IsSubsequence(S, T) : SeqEnum, SeqEnum -> BoolElt
IsSubspace
IsSubspace (A, B) : SpSpc, SpSpc -> BoolElt, SpMat
IsSubsystem
IsSubsystem(L,K) : LinearSys,LinearSys -> BoolElt
K subset L : LinearSys,LinearSys -> BoolElt
IsSubtensor
IsSubtensor(T, S) : TenSpcElt, TenSpcElt -> BoolElt
IsSubtensorSpace
IsSubtensorSpace(T, S) : TenSpc, TenSpc -> BoolElt
IsSUnit
IsSUnit(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt
IsSUnitWithPreimage
IsSUnitWithPreimage(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt, GrpAbElt
IsSupercuspidal
IsSupercuspidal(pi) : RepLoc -> BoolElt
IsSuperlattice
IsSuperlattice(L) : TorLat -> BoolElt
IsSupersingular
IsSupersingular(E : parameters) : CrvEll -> BoolElt
IsSuperSummitRepresentative
IsSuperSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
IsSupportingHyperplane
IsSupportingHyperplane(v,h,P) : TorLatElt,FldRatElt,TorPol -> BoolElt,RngIntElt
IsSurjective
IsSurjective(f) : Map -> [ BoolElt ]
IsSurjective(f) : MapChn -> BoolElt
IsSurjective(phi) : MapModAbVar -> BoolElt
IsSurjective(a) : ModMatRngElt -> BoolElt
IsSurjective(f) : ModMPolHom -> BoolElt
IsSuzukiGroup
IsSuzukiGroup(G) : GrpMat -> BoolElt, RngIntElt
IsSymmetric
IsSymmetric(A) : AlgBas -> BoolElt
IsSymmetric(a) : AlgMatElt -> BoolElt
IsSymmetric(D) : Dsgn -> BoolElt
IsSymmetric(G) : GrphUnd -> BoolElt
IsSymmetric(G) : GrpPerm -> BoolElt
IsSymmetric(A) : Mtrx -> BoolElt
IsSymmetric(A) : MtrxSprs -> BoolElt
IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
IsSymmetric(T) : TenSpc -> BoolElt
IsSymmetric(T) : TenSpcElt -> BoolElt
Ideal_IsSymmetric (Example H113E18)
RngInvar_IsSymmetric (Example H117E24)
IsSymplectic
IsSymplectic(L) : LSer -> BoolElt
IsOrthogonal(L) : LSer -> BoolElt
IsSymplecticCharacter
IsSymplecticCharacter(chi) : AlgChtrElt -> BoolElt
IsOrthogonalCharacter(chi) : AlgChtrElt -> BoolElt
IsSymplecticGroup
IsSymplecticGroup(G) : GrpMat -> BoolElt
IsSymplecticMatrix
IsSymplecticMatrix(A) : Mtrx -> BoolElt
IsSymplecticSelfDual
IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
IsSymplecticSelfOrthogonal
IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt
IsSymplecticSpace
IsSymplecticSpace(W) : ModTupFld -> BoolElt
IsTameGenusGroup
IsTameGenusGroup(G) : Group -> BoolElt
IsTameGenusTensor
IsTameGenusTensor(t) : TenSpcElt -> BoolElt
IsTamelyRamified
IsTamelyRamified(K) : FldAlg -> BoolElt
IsTamelyRamified(A) : GalRep -> BoolElt
IsTamelyRamified(O) : RngFunOrd -> BoolElt
IsTamelyRamified(P) : RngFunOrdIdl -> BoolElt
IsTamelyRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsTamelyRamified(L) : RngLocA -> BoolElt
IsTamelyRamified(O) : RngOrd -> BoolElt
IsTamelyRamified(P) : RngOrdIdl -> BoolElt
IsTamelyRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsTamelyRamified(R) : RngPad -> BoolElt
IsTangent
IsTangent(C, D, p) : Sch,Sch,Pt -> BoolElt
IsTensor
IsTensor(G: parameters) : GrpMat -> BoolElt
IsTensorInduced
IsTensorInduced(G : parameters) : GrpMat -> BoolElt
IsTerminal
IsTerminal(C) : TorCon -> BoolElt
IsTerminal(F) : TorFan -> BoolElt
IsTerminal(X) : TorVar -> BoolElt
IsTerminalThreefold
IsTerminalThreefold(B) : GRBskt -> BoolElt
IsTerminalThreefold(p) : GRPtS -> BoolElt
IsThick
IsThick(X) : CosetGeom -> BoolElt
Contents
Index (i)
Search
V2.28, 28 February 2025