About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsEven
IsEven(J) : JacHyp -> BoolElt
HasSquareSha(J) : JacHyp -> BoolElt
IsEven(C) : Code -> BoolElt
IsEven(chi) : GrpDrchElt -> BoolElt
IsEven(chi) : GrpDrchNFElt -> BoolElt
IsEven(G): GrpPerm -> BoolElt
IsEven(g) : GrpPermElt -> BoolElt
IsEven(L) : Lat -> BoolElt
IsEven(n) : RngIntElt -> BoolElt
IsExact
IsExact(a) : DiffCrvElt -> BoolElt
IsExact(d) : DiffFunElt -> BoolElt, FldFunGElt
IsExact(L) : Lat -> BoolElt
IsExact(x) : ModAbVarElt -> BoolElt
IsExact(C) : ModComplex -> BoolElt
IsExact(C, n) : ModCpx, RngIntElt -> BoolElt
IsExact(z) : SpcHydElt -> BoolElt, .
IsExact(z) : SpcHypElt -> BoolElt
IsExactlyDivisible
IsExactlyDivisible(x, y) : RngPadElt, RngPadElt -> BoolElt, RngPadElt
IsExactpAdic
IsExactpAdic(x) : Any -> BoolElt
IsExceptionalUnit
IsExceptionalUnit(u) : RngOrdElt -> BoolElt
IsExtension
IsExtension(G, H, f) : GrpPC, GrpPC, [Map] -> BoolElt, GrpPC
IsExtensionOf
IsExtensionOf(G) : GrpPerm -> [],
IsExtensionOf(L) : [GrpPerm] -> [], []
IsExtraSpecial
IsExtraSpecial(G) : GrpFin -> BoolElt
IsExtraSpecial(G) : GrpMat -> BoolElt
IsExtraSpecial(G) : GrpPC -> BoolElt
IsExtraSpecial(G) : GrpPerm -> BoolElt
IsExtraSpecialNormaliser
IsExtraSpecialNormaliser(G) : GrpMat -> BoolElt
IsFace
IsFace(N, F) : NwtnPgon,Tup -> BoolElt
IsFace(C,F) : TorCon,TorCon -> BoolElt
IsFactorial
IsFactorial(n) : RngIntElt -> BoolElt, RngIntElt
IsFactorisationPrime
IsFactorisationPrime(D) : DivSchElt -> BoolElt
IsFaithful
IsFaithful(x) : AlgChtrElt -> BoolElt
IsFaithful(G, Y) : GrpPerm, GSet -> BoolElt
IsFakeWeightedProjectiveSpace
IsFakeWeightedProjectiveSpace(X) : TorVar -> BoolElt
IsFanMap
IsFanMap(F1,F2) : TorFan,TorFan -> BoolElt
IsFanMap(F1,F2,f) : TorFan,TorFan,Map -> BoolElt
IsFano
IsFano(P) : TorPol -> BoolElt
IsFano(X) : TorVar -> BoolElt
IsField
IsField(H) : HomModAbVar -> BoolElt, Fld, Map, Map
IsField(R) : Rng -> BoolElt
IsField(R) : RngDiff -> BoolElt
IsFinite
IsFinite(G) : GrpAb -> BoolElt
IsFinite(W) : GrpFPCox -> BoolElt
IsFinite(G) : GrpGPC -> BoolElt
IsFinite(x) : GrpGPCElt -> BoolElt
IsFinite(G) : GrpLie -> BoolElt
IsFinite(G) : GrpMat -> Bool, RngIntElt
IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
IsFinite(x) : Infty -> BoolElt
IsFinite(G) : ModAbVarSubGrp -> RngIntElt
IsFinite(M) : MonRWS -> BoolElt, RngIntElt
IsFinite(G : parameters) : GrpMat -> BoolElt, RngIntElt
IsFinite(P) : PlcFunElt -> BoolElt
IsFinite(p) : PlcNumElt -> BoolElt
IsFinite(p) : PlcNumElt -> BoolElt
IsFinite(R) : Rng -> BoolElt
IsFinite(R) : RootStr -> BoolElt
IsFiniteMatrixGroup
GrpMatInf_IsFiniteMatrixGroup (Example H67E6)
IsFiniteMatrixGroupF
GrpMatInf_IsFiniteMatrixGroupF (Example H67E10)
GrpMatInf_IsFiniteMatrixGroupF (Example H67E7)
GrpMatInf_IsFiniteMatrixGroupF (Example H67E8)
GrpMatInf_IsFiniteMatrixGroupF (Example H67E9)
IsFiniteMatrixGroupFF
GrpMatInf_IsFiniteMatrixGroupFF (Example H67E2)
GrpMatInf_IsFiniteMatrixGroupFF (Example H67E3)
GrpMatInf_IsFiniteMatrixGroupFF (Example H67E4)
GrpMatInf_IsFiniteMatrixGroupFF (Example H67E5)
IsFiniteMatrixGroupFQ
GrpMatInf_IsFiniteMatrixGroupFQ (Example H67E1)
IsFiniteOrder
IsFiniteOrder(O) : RngFunOrd -> BoolElt
IsFirm
IsFirm(X) : IncGeom -> BoolElt
IsFlag
IsFlag(P) : TorPol -> BoolElt
IsFlex
IsFlex(C, p) : Sch,Pt -> BoolElt,RngIntElt
IsInflectionPoint(p) : Pt -> BoolElt,RngIntElt
IsFlipping
IsFlipping(X,i) : TorVar,RngIntElt -> BoolElt
IsForest
IsForest(G) : GrphUnd -> BoolElt
IsFree
IsFree(L) : LinearSys -> BoolElt
IsBasePointFree(L) : LinearSys -> BoolElt
IsFree(G) : GrpAb -> BoolElt
IsFree(L) : LatNF -> BoolElt
IsFree(M) : ModGrp -> BoolElt
IsFree(M) : ModMPol -> BoolElt
Contents
Index (i)
Search
V2.28, 13 July 2023