About
Calculator
Ordering
FAQ
Download
Download Magma
Databases
User Contributions
Documentation
Handbook
Overview
Release Notes
Discovering Maths with Magma
First Steps in Magma (pdf)
Solving Problems with Magma (pdf)
Acknowledgements
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (i)
Search
IsEven
IsEven(J) : JacHyp -> BoolElt
HasSquareSha(J) : JacHyp -> BoolElt
IsEven(C) : Code -> BoolElt
IsEven(chi) : GrpDrchElt -> BoolElt
IsEven(chi) : GrpDrchNFElt -> BoolElt
IsEven(G): GrpPerm -> BoolElt
IsEven(g) : GrpPermElt -> BoolElt
IsEven(L) : Lat -> BoolElt
IsEven(n) : RngIntElt -> BoolElt
IsExact
IsExact(a) : DiffCrvElt -> BoolElt
IsExact(d) : DiffFunElt -> BoolElt, FldFunGElt
IsExact(L) : Lat -> BoolElt
IsExact(x) : ModAbVarElt -> BoolElt
IsExact(C) : ModComplex -> BoolElt
IsExact(C, n) : ModCpx, RngIntElt -> BoolElt
IsExact(z) : SpcHydElt -> BoolElt, .
IsExact(z) : SpcHypElt -> BoolElt
IsExactlyDivisible
IsExactlyDivisible(x, y) : RngPadElt, RngPadElt -> BoolElt, RngPadElt
IsExactpAdic
IsExactpAdic(x) : Any -> BoolElt
IsExceptionalUnit
IsExceptionalUnit(u) : RngOrdElt -> BoolElt
IsExtension
IsExtension(G, H, f) : GrpPC, GrpPC, [Map] -> BoolElt, GrpPC
IsExtensionOf
IsExtensionOf(G) : GrpPerm -> [],
IsExtensionOf(L) : [GrpPerm] -> [], []
IsExtraSpecial
IsExtraSpecial(G) : GrpFin -> BoolElt
IsExtraSpecial(G) : GrpMat -> BoolElt
IsExtraSpecial(G) : GrpPC -> BoolElt
IsExtraSpecial(G) : GrpPerm -> BoolElt
IsExtraSpecialNormaliser
IsExtraSpecialNormaliser(G) : GrpMat -> BoolElt
IsFace
IsFace(N, F) : NwtnPgon,Tup -> BoolElt
IsFace(C,F) : TorCon,TorCon -> BoolElt
IsFactorial
IsFactorial(n) : RngIntElt -> BoolElt, RngIntElt
IsFactorisationPrime
IsFactorisationPrime(D) : DivSchElt -> BoolElt
IsFaithful
IsFaithful(x) : AlgChtrElt -> BoolElt
IsFaithful(G, Y) : GrpPerm, GSet -> BoolElt
IsFakeWeightedProjectiveSpace
IsFakeWeightedProjectiveSpace(X) : TorVar -> BoolElt
IsFanMap
IsFanMap(F1,F2) : TorFan,TorFan -> BoolElt
IsFanMap(F1,F2,f) : TorFan,TorFan,Map -> BoolElt
IsFano
IsFano(P) : TorPol -> BoolElt
IsFano(X) : TorVar -> BoolElt
IsField
IsField(H) : HomModAbVar -> BoolElt, Fld, Map, Map
IsField(R) : Rng -> BoolElt
IsField(R) : RngDiff -> BoolElt
IsFinite
IsFinite(G) : GrpAb -> BoolElt
IsFinite(W) : GrpFPCox -> BoolElt
IsFinite(G) : GrpGPC -> BoolElt
IsFinite(x) : GrpGPCElt -> BoolElt
IsFinite(G) : GrpLie -> BoolElt
IsFinite(G) : GrpMat -> Bool, RngIntElt
IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
IsFinite(x) : Infty -> BoolElt
IsFinite(G) : ModAbVarSubGrp -> RngIntElt
IsFinite(M) : MonRWS -> BoolElt, RngIntElt
IsFinite(G : parameters) : GrpMat -> BoolElt, RngIntElt
IsFinite(P) : PlcFunElt -> BoolElt
IsFinite(p) : PlcNumElt -> BoolElt
IsFinite(p) : PlcNumElt -> BoolElt
IsFinite(R) : Rng -> BoolElt
IsFinite(R) : RootStr -> BoolElt
IsFiniteMatrixGroup
GrpMatInf_IsFiniteMatrixGroup (Example H67E6)
IsFiniteMatrixGroupF
GrpMatInf_IsFiniteMatrixGroupF (Example H67E10)
GrpMatInf_IsFiniteMatrixGroupF (Example H67E7)
GrpMatInf_IsFiniteMatrixGroupF (Example H67E8)
GrpMatInf_IsFiniteMatrixGroupF (Example H67E9)
IsFiniteMatrixGroupFF
GrpMatInf_IsFiniteMatrixGroupFF (Example H67E2)
GrpMatInf_IsFiniteMatrixGroupFF (Example H67E3)
GrpMatInf_IsFiniteMatrixGroupFF (Example H67E4)
GrpMatInf_IsFiniteMatrixGroupFF (Example H67E5)
IsFiniteMatrixGroupFQ
GrpMatInf_IsFiniteMatrixGroupFQ (Example H67E1)
IsFiniteOrder
IsFiniteOrder(O) : RngFunOrd -> BoolElt
IsFirm
IsFirm(X) : IncGeom -> BoolElt
IsFlag
IsFlag(P) : TorPol -> BoolElt
IsFlex
IsFlex(C, p) : Sch,Pt -> BoolElt,RngIntElt
IsInflectionPoint(p) : Pt -> BoolElt,RngIntElt
IsFlipping
IsFlipping(X,i) : TorVar,RngIntElt -> BoolElt
IsForest
IsForest(G) : GrphUnd -> BoolElt
IsFree
IsFree(L) : LinearSys -> BoolElt
IsBasePointFree(L) : LinearSys -> BoolElt
IsFree(G) : GrpAb -> BoolElt
IsFree(L) : LatNF -> BoolElt
IsFree(M) : ModGrp -> BoolElt
IsFree(M) : ModMPol -> BoolElt
Contents
Index (i)
Search
V2.28, 28 February 2025