- irreds
- Irreducibility
- irreducibility
- Irreducible
- AbsolutelyIrreducibleConstituents(M) : ModGrp -> [ ModGrp ]
- AbsolutelyIrreducibleModule(M) : ModRng -> ModRng
- AbsolutelyIrreducibleModules(G) : Grp -> SeqEnum
- AbsolutelyIrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
- AbsolutelyIrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]
- AbsolutelyIrreducibleModulesSchur(G, K) : GrpPC, Fld -> List
- AbsolutelyIrreducibleModulesSchur(G, K) : GrpPC, Fld -> List
- AbsolutelyIrreducibleModulesSoluble(G, p) : Grp, RngIntElt -> SeqEnum
- AbsolutelyIrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]
- AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }
- IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
- IrreducibleComponents(X) : Sch -> SeqEnum
- IrreducibleCoxeterGraph(X, n) : MonStgElt, RngIntElt -> GrpUnd
- IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
- IrreducibleCoxeterMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
- IrreducibleDynkinDigraph(X, n) : MonStgElt, RngIntElt -> GrphDir
- IrreducibleHighestWeightFunction(G,w) : GrpLie, SeqEnum -> UserProgram
- IrreducibleHighestWeightGenerators(G,w) : GrpLie, SeqEnum -> SeqEnum,SeqEnum
- IrreducibleHighestWeightRepresentation(G,w) : GrpLie, SeqEnum -> Map
- IrreducibleLowTermGF2Polynomial(n) : RngIntElt -> RngUPolElt
- IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
- IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
- IrreducibleModules(G, K) : Grp, Fld -> SeqEnum
- IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
- IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
- IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
- IrreducibleModules(G, Q : parameters) : Grp, FldRat -> SeqEnum, SeqEnum
- IrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]
- IrreducibleModulesSchur(G, K: parameters) : GrpPC, Rng -> List[GModule]
- IrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
- IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
- IrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]
- IrreducibleRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
- IrreducibleRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
- IrreducibleSecondaryInvariants(R) : RngInvar -> [ RngMPolElt ]
- IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
- IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum
- IrreducibleSparseGF2Polynomial(n) : RngIntElt -> RngUPolElt
- IrreducibleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
- IsAbsolutelyIrreducible(C) : Crv -> BoolElt
- IsAbsolutelyIrreducible(G) : GrpMat -> BoolElt
- IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
- IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
- IsAbsolutelyIrreducible(R) : RootStr -> BoolElt
- IsAnalyticallyIrreducible(p) : Pt -> BoolElt
- IsCoxeterIrreducible(C) : AlgMatElt -> BoolElt
- IsCoxeterIrreducible(M) : AlgMatElt -> BoolElt
- IsIrreducible(x) : AlgChtrElt -> BoolElt
- IsIrreducible(A) : ArtRep -> BoolElt
- IsIrreducible(A) : GalRep -> BoolElt
- IsIrreducible(W) : GrpFPCox -> BoolElt
- IsIrreducible(G) : GrpMat -> BoolElt, ModGrp
- IsIrreducible(M) : ModRng -> BoolElt, ModRng, ModRng
- IsIrreducible(M) : ModRng -> BoolElt, ModRng, ModRng
- IsIrreducible(M) : ModSym -> BoolElt
- IsIrreducible(x) : RngElt -> BoolElt
- IsIrreducible(f) : RngMPolElt -> BoolElt
- IsIrreducible(f) : RngUPolElt -> BoolElt
- IsIrreducible(f) : RngUPolElt -> BoolElt
- IsIrreducible(f) : RngUPolXPadElt[RngXPad] -> BoolElt, Rec
- IsIrreducible(R) : RootStr -> BoolElt
- IsIrreducible(R) : RootSys -> BoolElt
- IsIrreducible(C) : Sch -> BoolElt
- IsIrreducible(X) : Sch -> BoolElt
- IsIrreducibleFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
- IsProjectivelyIrreducible(R) : RootStr -> BoolElt
- IsProjectivelyIrreducible(R) : RootSys -> BoolElt
- NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
- PhiIrreduciblePolynomials(F,d) : FldFin, RngIntElt -> SeqEnum[Tup]
- RandomIrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
- ReeIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
- SparseRootDatum(N) : MonStgElt -> RootDtmSprs
- StarIrreduciblePolynomials(F,d) : FldFin, RngIntElt -> SeqEnum
- SuzukiIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
- TildeIrreduciblePolynomials(q,d) : RngIntElt, RngIntElt -> SeqEnum
V2.28, 13 July 2023