- HN
- Hodge
- hodge
- hodge-struc
- HodgeNumber
- HodgeStructure
- HodgeVector
- Holes
- Holomorph
- holomorph
- Holomorphic
- HolomorphicDifferentials
- holomorphs
- Hom
- The Hom Module and Ext (MODULES OVER MULTIVARIATE RINGS)
- Hom(G, H) : GrpPC, GrpPC -> GrpAb, Map
- Hom(A, B) : ModAbVar, ModAbVar -> HomModAbVar
- Hom(C, N) : ModCpx, ModMPol -> ModMPol
- Hom(M, N) : ModDed, ModDed -> ModDed, Map
- Hom(M, N, "left") : ModMatRng, ModMatRng, MonStgElt -> ModMatRng
- Hom(M, N, "right") : ModMatRng, ModMatRng, MonStgElt -> ModMatRng
- Hom(M, N) : ModMPol, ModMPol -> ModMPol, Map
- Hom(M, N) : ModRng, ModRng -> ModMatRng
- Hom(V, W) : ModTupFld, ModTupFld -> ModMatFld
- Hom(M, N) : ModTupRng, ModTupRng -> ModMatRng
- HomAdjoints(m,n,S) : RngIntElt, RngIntElt, Srfc -> SeqEnum
- HomGenerators(G, H) : GrpAb, GrpAb -> GrpAb, Map
- HomGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
- HomMod(M, N) : ModGrp, ModGrp -> ModGrp
- PMod_Hom (Example H116E15)
- PMod_Hom (Example H116E16)
- hom
- Endomorphisms (LATTICES WITH GROUP ACTION)
- HomR(M, N) for Matrix Modules (FREE MODULES)
- Homomorphisms (ALGEBRAIC FUNCTION FIELDS)
- Homomorphisms (STRUCTURE CONSTANT ALGEBRAS)
- Homomorphisms of the Free Lie Algebra (LIE ALGEBRAS)
- The Hom Functor (ABELIAN GROUPS)
- The Homomorphism Type (MODULES OVER MULTIVARIATE RINGS)
- hom< G -> H | x : -> e(x) > : Grp, Grp -> Map
- hom< A -> B | x : -> e(x) > : Str, Str -> Map
- hom< A -> B | x : -> e(x), y : -> i(y) > : Str, Str -> Map
- hom<A -> B | S> : AlgBas, AlgBas, ModMatFldElt -> Map
- hom<L -> M | Q> : AlgFPLie, AlgFPLie, [ AlgFPLieElt ] -> Map
- hom< F -> S | f, y1, ..., yn > : AlgFr, Rng -> Map
- hom< A -> B | Q > : AlgGen, AlgGen, [ AlgGenElt ] -> Map
- hom<L -> M | Q> : AlgLie, AlgLie, [ AlgLieElt ] -> Map
- hom< A -> B | f > : AlgMat, AlgMat, Map -> Map
- hom< F -> R | r > : FldAlg, Rng, RngElt -> Map
- hom< F -> G | x > : FldFin, Rng -> Map
- hom<F -> R | g> : FldFun, Rng, RngElt -> Map
- hom< P -> S | f, y1, ..., yn > : FldFunRat, Rng -> Map
- hom< F -> R | r > : FldNum, Rng, RngElt -> Map
- hom< G -> H | L > : Grp, Grp -> Map
- hom< A -> B | L> : Grp, Grp, List -> Map
- hom<G -> H | L> : GrpMat, Grp, List -> Map
- hom< G -> H | L > : GrpPC, GrpPC, List -> Map
- hom<G -> H | L> : GrpPerm, List -> Map
- hom<M -> N | T> : ModDed, ModDed, Map -> Map
- hom< M -> N | X > : ModRng, ModRng, ModMatElt -> Map
- hom< B -> G | S : parameters > : Struct , Struct -> Map
- hom< G -> H | L: parameters> : GrpSLP, Grp -> Map
- hom< P -> G | S : parameters> : Struct , Struct -> Map
- hom< O -> R | g > : RngFunOrd, Rng, RngElt -> Map
- hom< O -> R | b1, ..., bn > : RngFunOrd, Rng, RngElt, ..., RngElt -> Map
- hom< O -> R | b1, ..., bn > : RngFunOrd, Rng, RngElt, ..., RngElt -> Map
- hom< Z -> R | > : RngInt, Rng -> Map
- hom< R -> S | > : RngIntRes, Rng -> Map
- hom< L -> R | a > : RngLocA, Rng, RngElt -> Map
- hom< P -> S | f, y1, ..., yn > : RngMPol, Rng -> Map
- hom< O -> R | r > : RngOrd, Rng, RngElt -> Map
- hom< P -> S | f, y > : RngUPol, Rng, Map, RngElt -> Map
- hom<R -> S | phiX, phiY> : RootDtm, RootDtm, Map, Map -> Map
- hom<R -> S | Q> : RootDtm, RootDtm, [RngIntElt] -> Map
- hom< A -> B | G > : Str, Str -> Map
- hom< A -> B | y1, ..., yn > : Str, Str -> Map
- hom< A -> G | S > : Struct , Struct -> Map
- hom< M -> N | S > : Struct , Struct -> Map
- hom< P -> G | S > : Struct , Struct -> Map
- hom< R -> G | S > : Struct , Struct -> Map
- hom< L -> K | M > : TorLat,TorLat,Mtrx -> TorLatMap
- FldFunG_hom (Example H45E27)
- FldQuad_hom (Example H37E2)
- ModDed_hom (Example H60E6)
- RngInt_hom (Example H19E1)
V2.28, 13 July 2023