- galrep-funeq
- galrep-galoisrepresentations
- galrep-galoisrepresentations-1
- galrep-group
- galrep-higherinertia
- galrep-induction
- galrep-inertia
- galrep-inertiainvariants
- galrep-isirreducible
- galrep-isramified
- galrep-isunramified
- galrep-iswildlyramified
- galrep-minimize
- galrep-notfullycomputed
- galrep-permutationcharacter
- galrep-power
- galrep-precision
- galrep-principalcharacter
- galrep-printing
- galrep-product
- galrep-reconstruction
- galrep-s-ex1
- galrep-s-ex2
- galrep-smash
- galrep-sp
- galrep-sp-1
- galrep-sum
- galrep-tatetwist
- galrep-unramifiedcharacter
- galrep-unramifiedrepresentation
- galrep-zerorepresentation
- Gamma
- AGammaL(arguments)
- AffineGammaLinearGroup(arguments)
- EulerGamma(R) : FldRe -> FldReElt
- Gamma(r) : FldReElt -> FldReElt
- Gamma(r, s) : FldReElt, FldReElt -> FldReElt
- Gamma(f) : RngSerElt -> RngSerElt
- GammaAction(A) : GGrp -> Map[Grp, GrpAuto]
- GammaAction(R) : RootDtm -> Rec
- GammaActionOnSimples(R) : RootDtm -> HomGrp
- GammaArray(H) : HypGeomData -> SeqEnum
- GammaD(s) : FldReElt -> FldReElt
- GammaFactors(HS) : HodgeStruc -> SeqEnum
- GammaFactors(L) : LSer -> SeqEnum
- GammaGroup(k, G) : Fld, GrpLie -> GGrp
- GammaGroup(k, A) : Fld, GrpLieAuto -> GGrp
- GammaGroup(Gamma, A, action) : Grp, Grp, Map[Grp, GrpAuto] -> GGrp
- GammaGroup(alpha) : OneCoC -> GGrp
- GammaList(H) : HypGeomData -> List
- GammaOrbitOnRoots(R,r) : RootDtm, RngIntElt -> GSetEnum
- GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
- GammaOrbitsRepresentatives(R, delta) : RootDtm, RngIntElt -> SeqEnum
- GammaRootSpace(R) : RootDtm -> GSetEnum, Map
- GammaUpper0(N) : RngIntElt -> GrpPSL2
- GammaUpper1(N) : RngIntElt -> GrpPSL2
- InducedGammaGroup(A, B) : GGrp, Grp -> GGrp
- LogGamma(r) : FldReElt -> FldReElt
- LogGamma(f) : RngSerElt -> RngSerElt
- ProjectiveGammaLinearGroup(arguments)
- ProjectiveGammaUnitaryGroup(arguments)
- gamma
- gamma-bessel
- gamma-groups
- Gamma0
- Gamma1
- GammaAction
V2.28, 13 July 2023