To: GalRep Default:
Replace Group(A) by its smallest possible quotient through which all components of A factor. If To is specified, instead replace Group(A) by Group(To), assuming the A factors through it.
> K:=pAdicField(3,20); > R<x>:=PolynomialRing(K); > list:=GaloisRepresentations(x^5-3); > list; [ 1-dim trivial Galois representation 1 over Q3[20], 1-dim unramified Galois representation (1,1,-1,-1,1) with G=F5, I=C5 over Q3[20], 1-dim unramified Galois representation (1,-1,-zeta(4)_4,zeta(4)_4,1) with G=F5, I=C5 over Q3[20], 1-dim unramified Galois representation (1,-1,zeta(4)_4,-zeta(4)_4,1) with G=F5, I=C5 over Q3[20], 4-dim Galois representation (4,0,0,0,-1) with G=F5, I=C5, conductor 3^4 over Q3[20] ] > [Minimize(A): A in list]; [ 1-dim trivial Galois representation 1 over Q3[20], 1-dim unramified Galois representation (1,-1) with G=C2, I=C1 over Q3[20], 1-dim unramified Galois representation (1,-1,-zeta(4)_4,zeta(4)_4) with G=C4, I=C1 over Q3[20], 1-dim unramified Galois representation (1,-1,zeta(4)_4,-zeta(4)_4) with G=C4, I=C1 over Q3[20], 4-dim Galois representation (4,0,0,0,-1) with G=F5, I=C5, conductor 3^4 over Q3[20] ] > forall{A: A in list | A eq Minimize(A)}; true
Finally, we illustrate how the parameter To may be used to descend a Galois representation to a specific Galois group, in this case the Galois group Gal(F/K) isomorphic to C4 of the degree 4 unramified extension of K.
> F:=ext<K|4>; // Take F = degree 4 unr. ext. of K, and > B:=PermutationCharacter(F,K); // any B with BaseField(B)=K, Field(B)=F > list[2]; 1-dim unramified Galois representation (1,1,-1,-1,1) with G=F5, I=C5 over Q3[20] > Minimize(list[2]: To:=B); 1-dim unramified Galois representation (1,1,-1,-1) with G=C4, I=C1 over Q3[20] > Minimize(list[2]); 1-dim unramified Galois representation (1,-1) with G=C2, I=C1 over Q3[20]
Base change (restriction) of a Galois representation A over K over a finite extension L/K.
> K:=pAdicField(2,20); > R<x>:=PolynomialRing(K); > A:=GaloisRepresentations(x^3-2)[3]; A; 2-dim Galois representation (2,0,-1) with G=S3, I=C3, conductor 2^2 over Q2[20] > L:=ext<K|2>; > R:=Restriction(A,L); R; 2-dim Galois representation (2,-1,-1) with G=C3, I=C3, conductor 2^2 over ext<Q2[20]|2> > IsIrreducible(A),IsIrreducible(R); true false
Induction of a Galois representation A over K to a subfield K0⊂K.
> K0:=pAdicField(2,20); // K0=Q2 > K:=ext<K0|2>; // K=Q2(zeta_3) > R<x>:=PolynomialRing(K); > A:=GaloisRepresentations(x^3-102)[3]; > A; // 1-dim character over K 1-dim Galois representation (1,-zeta(3)_3-1,zeta(3)_3) with G=C3, I=C3, conductor 2^1 over ext<Q2[20]|2> > Induction(A,K0); // Induced to K0 2-dim Galois representation (2,0,-1) with G=S3, I=C3, conductor 2^2 over Q2[20]