- G
- G-lattices
- G-sets
- g1minred
- G2
- G23
- G2Invariants
- G2Maximals
- G2RootSystem
- G2ToIgusaInvariants
- G4
- Gabidulin
- GabidulinCode
- gal-desc
- GalCohom
- Gallager
- GallagerCode
- Galois
- FINITE FIELDS
- varphi-modules and Galois Representations in Magma (MOD P GALOIS REPRESENTATIONS)
- AbsoluteGaloisGroup(A) : FldAb -> GrpPerm, SeqEnum, GaloisData
- ExtendGaloisCocycle(c) : OneCoC -> OneCoC
- FiniteField(q) : RngIntElt -> FldFin
- FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin
- GaloisCohomology(A) : GGrp -> SeqEnum
- GaloisConjugacyRepresentatives(G) : GrpDrch -> [GrpDrchElt]
- GaloisConjugate(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
- GaloisGroup(K, k) : FldFin, FldFin -> GrpPerm, [FldFinElt]
- GaloisGroup(F) : FldFun -> GrpPerm, [RngElt], GaloisData
- GaloisGroup(K) : FldNum -> GrpPerm, SeqEnum, GaloisData
- GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
- GaloisGroup(f) : RngUPolElt -> GrpPerm, [ RngElt ], GaloisData
- GaloisGroup(f) : RngUPolElt[FldPad] -> GrpPerm, SeqEnum, UserProgram
- GaloisGroup(f) : RngUPolElt[RngInt] -> GrpPerm, SeqEnum, GaloisData
- GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
- GaloisImage(x, i) : RngPadElt, RngIntElt -> RngPadElt
- GaloisOrbit(x) : AlgChtrElt -> { AlgChtrElt }
- GaloisProof(f, S) : RngUPolElt, GaloisData -> BoolElt
- GaloisQuotient(K, Q) : FldNum, GrpPerm -> SeqEnum[RngUPolElt]
- GaloisRepresentation(A,p) : ArtRep,RngIntElt -> GalRep
- GaloisRepresentation(E) : CrvEll -> GalRep
- GaloisRepresentation(E,p) : CrvEll,RngIntElt -> GalRep
- GaloisRepresentation(E,P) : CrvEll,RngOrdIdl -> GalRep
- GaloisRepresentation(C,P) : CrvHyp[FldNum],RngOrdIdl -> GalRep
- GaloisRepresentation(C) : CrvHyp[FldPad] -> GalRep
- GaloisRepresentation(C,p) : CrvHyp[FldRat], RngIntElt -> GalRep
- GaloisRepresentation(chi,p) : GrpDrchElt,RngIntElt -> GalRep
- GaloisRepresentation(f,p) : ModFrmElt,RngIntElt -> GalRep
- GaloisRepresentation(pi) : RepLoc -> GalRep
- GaloisRepresentations(F,K) : FldPad,FldPad -> SeqEnum[GalRep]
- GaloisRepresentations(f) : RngUPolEltFldPad -> SeqEnum[GalRep]
- GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
- GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
- GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
- GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal
- GaloisRoot(f, i, S) : RngUPolElt, RngIntElt, GaloisData -> RngElt
- GaloisSplittingField(f) : RngUPolElt -> FldFun, [FldFunElt], GrpPerm, [[FldFunElt]]
- GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]
- GaloisSubfieldTower(S, L) : GaloisData, [GrpPerm] -> FldNum, [Tup<RngSLPolElt, RngUPolElt, [GrpPermElt]>], UserProgram, UserProgram
- GaloisSubgroup(K, U) : FldNum, GrpPerm -> RngUPolElt, RngSLPolElt
- GeometricGaloisGroup(f) : RngUPolElt -> GrpPerm, RngUPolElt, GaloisData
- Group(A) : GalRep -> GrpPerm
- galois
V2.28, 13 July 2023