- FrattiniQuotientRank
- FrattiniSubgroup
- Free
- IsBasePointFree(D) : DivSchElt -> BoolElt
- IsMobile(D) : DivSchElt -> BoolElt
- BaseLocus(D) : DivSchElt -> Sch
- FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
- FreeAbelianGroup(n) : RngIntElt -> GrpAb
- FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
- FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
- FreeAlgebra(K, n) : Fld, RngIntElt -> AlgFr
- FreeAlgebra(R, M) : Rng, MonFP -> AlgFPOld
- FreeGenerators(H) : GrpFP -> SeqEnum, GrpFP
- FreeGroup(n) : RngIntElt -> GrpFP
- FreeLieAlgebra(F, n) : Rng, RngIntElt -> AlgFPLie
- FreeMonoid(n) : RngIntElt -> MonFP
- FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
- FreeProduct(G, H) : GrpFP, GrpFP -> GrpFP
- FreeProduct(R, S) : SgpFP, SgpFP -> SgpFP
- FreeProduct(Q) : [ GrpFP ] -> GrpFP
- FreeResolution(M) : ModMPol -> ModCpx, ModMPolHom
- FreeResolution(R) : RngInvar -> [ ModMPol ]
- FreeSemigroup(n) : RngIntElt -> SgpFP
- InverseAutomorphismFreeGroup(F, Q) : GrpFP, SeqEnum -> GrpAutoElt
- IsBasePointFree(L) : LinearSys -> BoolElt
- IsCokernelTorsionFree(f) : TorLatMap -> BoolElt
- IsFree(G) : GrpAb -> BoolElt
- IsFree(L) : LatNF -> BoolElt
- IsFree(M) : ModGrp -> BoolElt
- IsFree(M) : ModMPol -> BoolElt
- IsLocallyFree(S) : ShfCoh -> BoolElt, RngIntElt
- MinimalFreeResolution(R) : RngInvar -> [ ModMPol ]
- NaturalFreeAlgebraCover(A) : AlgMat -> Map
- NaturalFreeAlgebraCover(A) : AlgMat -> Map
- RedRelatorsForFreeProduct(groupList, freeFacs) : List, RngIntElt ->GrpFP, SeqEnum, SeqEnum, Map, SeqEnum
- SquareFreeFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
- TorsionFreeRank(A) : GrpAb -> RngIntElt
- TorsionFreeRank(G) : GrpFP -> RngIntElt
- TorsionFreeSubgroup(A) : GrpAb -> GrpAb
- GrpFree_Free (Example H76E1)
- free
- free-modules
- free-resolution
- free-subgroups
- FreeAbelianGroup
- FreeAbelianQuotient
- FreeAlgebra
- FreeAut
- FreeAut2
- Freef
- FreefValues
- FreeGenerators
- FreeGroup
- FreeLie
- FreeLieAlgebra
- FreeMonoid
- FreeNilpotentGroup
- FreeProduct
V2.28, 13 July 2023