- fpg
- fpg-hyperbolic
- FPGroup
- AbelianFPGroup([n1,...,nr]): [ RngIntElt ] -> GrpFP
- AlternatingFPGroup(n) : RngIntElt -> GrpFP
- BraidFPGroup(n) : RngIntElt -> GrpFP
- CoxeterFPGroup(W) : GrpFPCox -> GrpFP, Map
- CoxeterFPGroup(t) : MonStgElt -> GrpFP
- CyclicFPGroup(n) : RngIntElt -> GrpFP
- DihedralFPGroup(n) : RngIntElt -> GrpFP
- ExtraSpecialFPGroup(p, n : parameters) : RngIntElt, RngIntElt -> GrpFP
- FPGroup(A) : GrpAb -> GrpFP, Hom(Grp)
- FPGroup(G) : GrpAtc -> GrpFP, Map
- FPGroup(A) : GrpAuto -> GrpFP, Map
- FPGroup(G) : GrpGPC -> GrpFP, Map
- FPGroup(G) : GrpMat -> GrpFP, Hom(Grp)
- FPGroup(G) : GrpPC -> GrpFP, Hom(Grp)
- FPGroup(G) : GrpPC -> GrpFP, Map
- FPGroup(G) : GrpPerm -> GrpFP, Hom(Grp)
- FPGroup(G) : GrpPerm :-> GrpFP, Hom(Grp)
- FPGroup(G, N) : GrpPerm, GrpPerm :-> GrpFP, Hom(Grp)
- FPGroup< X | R > : List(Var), List(GrpFPRel) -> GrpFP, Hom(Grp)
- FPGroup(CM) : ModCoho -> Grp, HomGrp
- FPGroup(G: parameters) : GrpPerm :-> GrpFP, Hom(Grp)
- FPGroupStrong(G) : GrpMat -> GrpFP, Hom(Grp)
- FPGroupStrong(G) : GrpPerm -> GrpFP, Hom(Grp)
- FPGroupStrong(G, N) : GrpPerm, GrpPerm -> GrpFP, Hom(Grp)
- FPGroupStrong(G: parameters) : GrpPerm :-> GrpFP, Hom(Grp)
- IsInfiniteFPGroup(G : parameters) : GrpFP -> BoolElt
- OuterFPGroup(A) : GrpAuto -> GrpFP, Map
- SymmetricFPGroup(n) : RngIntElt -> GrpFP
- GrpFPInt_FPGroup (Example H77E10)
- Grp_FPGroup (Example H63E15)
- FPGroup1
- FPGroup2
- FPGroupStrong
- FPQuotient
- fprintf
- fqt
- Fraction
- fraction
- Fractional
- FractionalPart
- Fractions
- fractions
- Frame
- Frattini
V2.28, 13 July 2023