About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (d)
Search
defect
The Quadratic Defect (NUMBER FIELDS AND ORDERS)
DefectGroup
DefectGroup(x, p) : AlgChtrElt, RngIntElt -> Grp
DefectGroup(T, b, p) : SeqEnum[AlgChtrElt], SetEnum[RngIntElt], RngIntElt -> Grp
Deficient
IsDeficient(C, p) : CrvHyp, RngIntElt -> BoolElt
Defined
HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
IsDefined(A, x) : Assoc, Elt -> Bool, Elt
IsDefined(L, i) : List, RngIntElt -> Elt
IsDefined(S, i) : SeqEnum, RngIntElt -> BoolElt
Defines
DefinesAbelianSubvariety(A, V) : ModAbVar, ModTupFld -> BoolElt, ModAbVar
DefinesHomomorphism(P) : GrpFPHomsProc -> BoolElt
DefinesAbelianSubvariety
DefinesAbelianSubvariety(A, V) : ModAbVar, ModTupFld -> BoolElt, ModAbVar
DefinesHomomorphism
DefinesHomomorphism(P) : GrpFPHomsProc -> BoolElt
Defining
A`NormGroup : FldAb -> Rec
A`DefiningGroup : FldAb -> Rec
AllDefiningPolynomials(f) : MapSch -> SeqEnum
AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum
ConstantField(F) : FldFunG -> Rng
DefiningEquations(model) : ModelG1 -> [ RngMPolElt ]
DefiningIdeal(C) : Crv -> RngMPol
DefiningIdeal(C) : Sch -> RngMPol
DefiningIdeal(X) : Sch -> RngMPol
DefiningMap(L) : RngPad -> Map
DefiningMatrix(f) : TorLatMap -> ModMatRngElt
DefiningModularSymbolsSpace(pi) : RepLoc -> ModSym
DefiningMonomial(D) : DivTorElt -> RngMPolElt
DefiningPoints(N) : NwtnPgon -> SeqEnum
DefiningPolynomial(A) : ArtRep -> RngUPolElt
DefiningPolynomial(C) : Crv -> RngMPolElt
DefiningPolynomial(E) : CrvEll -> RngMPolElt
DefiningPolynomial(F) : FldAlg -> RngUPolElt
DefiningPolynomial(F) : FldFin -> RngUPolElt
DefiningPolynomial(F, E) : FldFin -> RngUPolElt
DefiningPolynomial(F) : FldFun -> RngUPolElt
DefiningPolynomial(F) : FldNum -> RngUPolElt
DefiningPolynomial(Q) : FldRat -> RngUPolElt
DefiningPolynomial(A) : GalRep -> RngUPolElt
DefiningPolynomial(L) : RngLocA -> RngUPolElt
DefiningPolynomial(L) : RngPad -> RngUPolElt
DefiningPolynomial(K, L) : RngPad, RngPad -> RngUPolElt
DefiningPolynomial(s) : RngPowAlgElt -> RngUPolElt
DefiningPolynomial(E) : RngSerExt -> RngUPolElt
DefiningPolynomial(R) : RngXPad -> RngUPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(X) : Sch -> RngMPolElt
DefiningPolynomial(K) : SrfKum -> RngMPolElt
DefiningPolynomials(F) : FldFun -> [RngUPolElt]
DefiningPolynomials(H) : HypGeomData -> RngUPolElt, RngUPolElt
DefiningPolynomials(f) : MapSch -> SeqEnum
DefiningPolynomials(X) : Sch -> SeqEnum
DefiningSubschemePolynomial(G) : SchGrpEll -> RngUPolElt
FactoredDefiningPolynomials(f) : MapSch -> SeqEnum
FactoredInverseDefiningPolynomials(f) : MapSch -> SeqEnum
HasDefiningMap(L) : RngPad -> BoolElt, Map
InverseDefiningPolynomials(f) : MapSch -> SeqEnum
defining
Defining Ideals and Quotient Rings (DIFFERENTIAL RINGS)
Defining Polynomial (FINITE FIELDS)
defining-ideal-quotient
Defining Ideals and Quotient Rings (DIFFERENTIAL RINGS)
defining-polynomial
Defining Polynomial (FINITE FIELDS)
DefiningConstantField
DefiningConstantField(F) : FldFunG -> Rng
ConstantField(F) : FldFunG -> Rng
DefiningEquation
Polynomial(X) : Sch -> RngMPolElt
DefiningEquation(X) : Sch -> RngMPolElt
Equation(X) : Sch -> RngMPolElt
DefiningPolynomial(X) : Sch -> RngMPolElt
DefiningEquations
DefiningEquations(model) : ModelG1 -> [ RngMPolElt ]
DefiningPolynomials(f) : MapSch -> SeqEnum
DefiningPolynomials(X) : Sch -> SeqEnum
DefiningIdeal
DefiningIdeal(C) : Crv -> RngMPol
DefiningIdeal(C) : Sch -> RngMPol
DefiningIdeal(X) : Sch -> RngMPol
DefiningMap
DefiningMap(L) : RngPad -> Map
HasDefiningMap(L) : RngPad -> BoolElt, Map
DefiningMatrix
DefiningMatrix(f) : TorLatMap -> ModMatRngElt
DefiningModularSymbolsSpace
DefiningModularSymbolsSpace(pi) : RepLoc -> ModSym
DefiningMonomial
DefiningMonomial(D) : DivTorElt -> RngMPolElt
DefiningPoints
DefiningPoints(N) : NwtnPgon -> SeqEnum
DefiningPolynomial
DefiningPolynomial(A) : ArtRep -> RngUPolElt
DefiningPolynomial(C) : Crv -> RngMPolElt
DefiningPolynomial(E) : CrvEll -> RngMPolElt
DefiningPolynomial(F) : FldAlg -> RngUPolElt
DefiningPolynomial(F) : FldFin -> RngUPolElt
DefiningPolynomial(F, E) : FldFin -> RngUPolElt
DefiningPolynomial(F) : FldFun -> RngUPolElt
DefiningPolynomial(F) : FldNum -> RngUPolElt
DefiningPolynomial(Q) : FldRat -> RngUPolElt
DefiningPolynomial(A) : GalRep -> RngUPolElt
DefiningPolynomial(L) : RngLocA -> RngUPolElt
DefiningPolynomial(L) : RngPad -> RngUPolElt
DefiningPolynomial(K, L) : RngPad, RngPad -> RngUPolElt
DefiningPolynomial(s) : RngPowAlgElt -> RngUPolElt
DefiningPolynomial(E) : RngSerExt -> RngUPolElt
DefiningPolynomial(R) : RngXPad -> RngUPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(X) : Sch -> RngMPolElt
DefiningPolynomial(K) : SrfKum -> RngMPolElt
Contents
Index (d)
Search
V2.28, 13 July 2023