About
Calculator
Ordering
FAQ
Download
Download Magma
Databases
User Contributions
Documentation
Handbook
Overview
Release Notes
Discovering Maths with Magma
First Steps in Magma (pdf)
Solving Problems with Magma (pdf)
Acknowledgements
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (d)
Search
defect
The Quadratic Defect (NUMBER FIELDS AND ORDERS)
DefectGroup
DefectGroup(x, p) : AlgChtrElt, RngIntElt -> Grp
DefectGroup(T, b, p) : SeqEnum[AlgChtrElt], SetEnum[RngIntElt], RngIntElt -> Grp
Deficient
IsDeficient(C, p) : CrvHyp, RngIntElt -> BoolElt
Defined
HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
IsDefined(A, x) : Assoc, Elt -> Bool, Elt
IsDefined(L, i) : List, RngIntElt -> Elt
IsDefined(S, i) : SeqEnum, RngIntElt -> BoolElt
Defines
DefinesAbelianSubvariety(A, V) : ModAbVar, ModTupFld -> BoolElt, ModAbVar
DefinesHomomorphism(P) : GrpFPHomsProc -> BoolElt
DefinesAbelianSubvariety
DefinesAbelianSubvariety(A, V) : ModAbVar, ModTupFld -> BoolElt, ModAbVar
DefinesHomomorphism
DefinesHomomorphism(P) : GrpFPHomsProc -> BoolElt
Defining
A`NormGroup : FldAb -> Rec
A`DefiningGroup : FldAb -> Rec
AllDefiningPolynomials(f) : MapSch -> SeqEnum
AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum
ConstantField(F) : FldFunG -> Rng
DefiningEquations(model) : ModelG1 -> [ RngMPolElt ]
DefiningIdeal(C) : Crv -> RngMPol
DefiningIdeal(C) : Sch -> RngMPol
DefiningIdeal(X) : Sch -> RngMPol
DefiningMap(L) : RngPad -> Map
DefiningMatrix(f) : TorLatMap -> ModMatRngElt
DefiningModularSymbolsSpace(pi) : RepLoc -> ModSym
DefiningMonomial(D) : DivTorElt -> RngMPolElt
DefiningPoints(N) : NwtnPgon -> SeqEnum
DefiningPolynomial(A) : ArtRep -> RngUPolElt
DefiningPolynomial(C) : Crv -> RngMPolElt
DefiningPolynomial(E) : CrvEll -> RngMPolElt
DefiningPolynomial(F) : FldAlg -> RngUPolElt
DefiningPolynomial(F) : FldFin -> RngUPolElt
DefiningPolynomial(F, E) : FldFin -> RngUPolElt
DefiningPolynomial(F) : FldFun -> RngUPolElt
DefiningPolynomial(F) : FldNum -> RngUPolElt
DefiningPolynomial(Q) : FldRat -> RngUPolElt
DefiningPolynomial(A) : GalRep -> RngUPolElt
DefiningPolynomial(L) : RngLocA -> RngUPolElt
DefiningPolynomial(L) : RngPad -> RngUPolElt
DefiningPolynomial(K, L) : RngPad, RngPad -> RngUPolElt
DefiningPolynomial(s) : RngPowAlgElt -> RngUPolElt
DefiningPolynomial(E) : RngSerExt -> RngUPolElt
DefiningPolynomial(R) : RngXPad -> RngUPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(X) : Sch -> RngMPolElt
DefiningPolynomial(K) : SrfKum -> RngMPolElt
DefiningPolynomials(F) : FldFun -> [RngUPolElt]
DefiningPolynomials(H) : HypGeomData -> RngUPolElt, RngUPolElt
DefiningPolynomials(f) : MapSch -> SeqEnum
DefiningPolynomials(X) : Sch -> SeqEnum
DefiningSubschemePolynomial(G) : SchGrpEll -> RngUPolElt
FactoredDefiningPolynomials(f) : MapSch -> SeqEnum
FactoredInverseDefiningPolynomials(f) : MapSch -> SeqEnum
HasDefiningMap(L) : RngPad -> BoolElt, Map
InverseDefiningPolynomials(f) : MapSch -> SeqEnum
defining
Defining Ideals and Quotient Rings (DIFFERENTIAL RINGS)
Defining Polynomial (FINITE FIELDS)
defining-ideal-quotient
Defining Ideals and Quotient Rings (DIFFERENTIAL RINGS)
defining-polynomial
Defining Polynomial (FINITE FIELDS)
DefiningConstantField
DefiningConstantField(F) : FldFunG -> Rng
ConstantField(F) : FldFunG -> Rng
DefiningEquation
Polynomial(X) : Sch -> RngMPolElt
DefiningEquation(X) : Sch -> RngMPolElt
Equation(X) : Sch -> RngMPolElt
DefiningPolynomial(X) : Sch -> RngMPolElt
DefiningEquations
DefiningEquations(model) : ModelG1 -> [ RngMPolElt ]
DefiningPolynomials(f) : MapSch -> SeqEnum
DefiningPolynomials(X) : Sch -> SeqEnum
DefiningIdeal
DefiningIdeal(C) : Crv -> RngMPol
DefiningIdeal(C) : Sch -> RngMPol
DefiningIdeal(X) : Sch -> RngMPol
DefiningMap
DefiningMap(L) : RngPad -> Map
HasDefiningMap(L) : RngPad -> BoolElt, Map
DefiningMatrix
DefiningMatrix(f) : TorLatMap -> ModMatRngElt
DefiningModularSymbolsSpace
DefiningModularSymbolsSpace(pi) : RepLoc -> ModSym
DefiningMonomial
DefiningMonomial(D) : DivTorElt -> RngMPolElt
DefiningPoints
DefiningPoints(N) : NwtnPgon -> SeqEnum
DefiningPolynomial
DefiningPolynomial(A) : ArtRep -> RngUPolElt
DefiningPolynomial(C) : Crv -> RngMPolElt
DefiningPolynomial(E) : CrvEll -> RngMPolElt
DefiningPolynomial(F) : FldAlg -> RngUPolElt
DefiningPolynomial(F) : FldFin -> RngUPolElt
DefiningPolynomial(F, E) : FldFin -> RngUPolElt
DefiningPolynomial(F) : FldFun -> RngUPolElt
DefiningPolynomial(F) : FldNum -> RngUPolElt
DefiningPolynomial(Q) : FldRat -> RngUPolElt
DefiningPolynomial(A) : GalRep -> RngUPolElt
DefiningPolynomial(L) : RngLocA -> RngUPolElt
DefiningPolynomial(L) : RngPad -> RngUPolElt
DefiningPolynomial(K, L) : RngPad, RngPad -> RngUPolElt
DefiningPolynomial(s) : RngPowAlgElt -> RngUPolElt
DefiningPolynomial(E) : RngSerExt -> RngUPolElt
DefiningPolynomial(R) : RngXPad -> RngUPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(X) : Sch -> RngMPolElt
DefiningPolynomial(K) : SrfKum -> RngMPolElt
Contents
Index (d)
Search
V2.28, 28 February 2025