- cusp-example
- cusp-sing
- CuspForms
- Cuspidal
- CuspidalInducingDatum
- CuspidalProjection
- CuspidalSubgroup
- CuspidalSubgroupTable
- CuspidalSubspace
- CuspIsSingular
- CuspPlaces
- Cusps
- cusps
- cusps-and-elliptic-points
- cusps_small_mod_crv
- CuspWidth
- Cut
- CutVertices
- cwi
- CWIFormat
- cy
- Cycle
- CycleCount
- CycleDecomposition
- Cycles
- CycleStructure
- Cyclic
- CyclicSubgroups(G) : GrpPC -> SeqEnum
- ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
- NilpotentSubgroups(G) : GrpPC -> SeqEnum
- AbelianSubgroups(G) : GrpPC -> SeqEnum
- AdditiveCyclicCode(v) : ModTupFldElt -> CodeAdd
- AdditiveCyclicCode(v4, v2) : ModTupFldElt, ModTupFldElt -> CodeAdd
- AdditiveCyclicCode(n, f) : RngIntElt, RngUPolElt -> CodeAdd
- AdditiveCyclicCode(n, f4, f2) : RngIntElt, RngUPolElt, RngUPolElt -> CodeAdd
- AdditiveQuasiCyclicCode(n, Q) : RngIntElt, SeqEnum[RngUPolElt] -> CodeAdd
- AdditiveQuasiCyclicCode(n, Q, h) : RngIntElt, SeqEnum[RngUPolElt], RngIntElt -> CodeAdd
- AdditiveQuasiCyclicCode(Q) : SeqEnum[ModTupFldElt] -> CodeAdd
- AdditiveQuasiCyclicCode(Q, h) : SeqEnum[ModTupFldElt], RngIntElt -> CodeAdd
- ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
- ConstaCyclicCode(n, f, alpha) : RngIntElt, RngUPolElt, FldFinElt -> Code
- CyclicCode(u) : ModTupRngElt -> Code
- CyclicCode(u) : ModTupRngElt -> Code
- CyclicCode(n, g) : RngIntElt, RngUPolElt -> Code
- CyclicCode(n, g) : RngIntElt, RngUPolElt -> Code
- CyclicCode(n, T, K) : RngIntElt, [ FldFinElt ], FldFin -> Code
- CyclicFPGroup(n) : RngIntElt -> GrpFP
- CyclicGroup(C, n) : Cat, RngIntElt -> GrpFin
- CyclicGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
- CyclicGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
- CyclicGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
- CyclicPolytope(L,n) : TorLat,RngIntElt -> TorPol
- CyclicSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
- CyclicSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
- CyclicToRadical(K, a, z) : FldFun, FldFunElt, RngElt -> FldFun, [FldFunElt], [FldFunElt]
- CyclicToRadical(K, a, z) : FldNum, FldNumElt, RngElt -> FldNum, [FldNumElt], [FldNumElt]
- IsCyclic(R) : AlgAss -> BoolElt, AlgAssElt
- IsCyclic(C) : Code -> BoolElt
- IsCyclic(C) : Code -> BoolElt
- IsCyclic(F) : FldAlg -> BoolElt
- IsCyclic(F) : FldNum -> BoolElt
- IsCyclic(G) : GrpAb -> BoolElt
- IsCyclic(G) : GrpFin -> BoolElt
- IsCyclic(G) : GrpGPC -> BoolElt
- IsCyclic(G) : GrpMat -> BoolElt
- IsCyclic(G) : GrpPC -> BoolElt
- IsCyclic(G) : GrpPerm -> BoolElt
- QuantumCyclicCode(v) : ModTupFldElt -> CodeAdd
- QuantumCyclicCode(v4, v2) : ModTupFldElt, ModTupFldElt -> CodeAdd
- QuantumCyclicCode(n, f) : RngIntElt, RngUPolElt -> CodeAdd
- QuantumQuasiCyclicCode(n, Q) : RngIntElt, SeqEnum[RngUPolElt] -> CodeAdd
- QuantumQuasiCyclicCode(Q) : SeqEnum[ModTupFldElt] -> CodeAdd
- QuasiCyclicCode(n, Gen) : RngIntElt, [ RngUPolElt ] -> Code
- QuasiCyclicCode(n, Gen, h) : RngIntElt, [ RngUPolElt ], RngIntElt -> Code
- QuasiCyclicCode(Gen) : [ ModTupRngElt ] -> Code
- QuasiCyclicCode(Gen, h) : [ModTupRngElt] , RngIntElt -> Code
- QuasiTwistedCyclicCode(n, Gen, alpha) : RngIntElt, [RngUPolElt], FldFinElt -> Code
- QuasiTwistedCyclicCode(n, Gen, alpha, h) : RngIntElt, [RngUPolElt], FldFinElt, RngIntElt -> Code
- QuasiTwistedCyclicCode(Gen, alpha) : [ModTupRngElt], FldFinElt -> Code
- QuasiTwistedCyclicCode(Gen, alpha, h) : [ModTupRngElt], FldFinElt, RngIntElt -> Code
V2.28, 13 July 2023